当前位置: 首页 > 详情页

Dual-Teacher Feature Distillation: A Transfer Learning Method for Insomniac PSG Staging

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China [2]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China [3]China Natl Engn Lab Crit Technol Informat Secur Cl, Beijing 100124, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100029, Peoples R China [5]Beijing Key Lab Neuromodulat, Beijing 100053, Peoples R China [6]Beijing Univ Technol, Coll Appl Sci, Beijing 100124, Peoples R China
出处:
ISSN:

关键词: Insomnia PSG staging knowledge distillation dual-teacher transfer learning

摘要:
Insomnia is the most common sleep disorder linked with adverse long-term medical and psychiatric outcomes. Automatic sleep staging plays a crucial role in aiding doctors to diagnose insomnia disorder. Only a few studies have been conducted to develop automatic sleep staging methods for insomniacs, and most of them have utilized transfer learning methods, which involve pre-training models on healthy individuals and then fine-tuning them on insomniacs. Unfortunately, significant differences in feature distribution between the two subject groups impede the transfer performance, highlighting the need to effectively integrate the features of healthy subjects and insomniacs. In this paper, we propose a dual-teacher cross-domain knowledge transfer method based on the feature-based knowledge distillation to improve the performance of sleep staging for insomniacs. Specifically, the insomnia teacher directly learns from insomniacs and feeds the corresponding domain-specific features into the student network, while the health domain teacher guide the student network to learn domain-generic features. During the training process, we adopt the OFD (Overhaul of Feature Distillation) method to build the health domain teacher. We conducted the experiments to validate the proposed method, using the Sleep-EDF database as the source domain and the CAP-Database as the target domain. The results demonstrate that our method surpasses advanced techniques, achieving an average sleep staging accuracy of 80.56% on the CAP-Database. Furthermore, our method exhibits promising performance on the private dataset.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China [2]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China [3]China Natl Engn Lab Crit Technol Informat Secur Cl, Beijing 100124, Peoples R China
通讯作者:
通讯机构: [1]Beijing Univ Technol, Fac Informat Technol, Beijing 100124, Peoples R China [2]Beijing Key Lab Trusted Comp, Beijing 100124, Peoples R China [3]China Natl Engn Lab Crit Technol Informat Secur Cl, Beijing 100124, Peoples R China [4]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100029, Peoples R China [5]Beijing Key Lab Neuromodulat, Beijing 100053, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院