当前位置: 首页 > 详情页

Deep Multiview Module Adaption Transfer Network for Subject-Specific EEG Recognition

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China [2]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China [4]Chongqing Univ, Coll Comp Sci, Chongqing 400715, Peoples R China [5]Beijing Inst Technol, Sch Med Technol, Beijing 100081, Peoples R China [6]Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
出处:
ISSN:

关键词: Electroencephalography Feature extraction Brain modeling Transfer learning Task analysis Target recognition Convolutional neural networks Electroencephalogram (EEG) recognition module adaption multiview transfer learning

摘要:
Transfer learning is one of the popular methods to solve the problem of insufficient data in subject-specific electroencephalogram (EEG) recognition tasks. However, most existing approaches ignore the difference between subjects and transfer the same feature representations from source domain to different target domains, resulting in poor transfer performance. To address this issue, we propose a novel subject-specific EEG recognition method named deep multiview module adaption transfer (DMV-MAT) network. First, we design a universal deep multiview (DMV) network to generate different types of discriminative features from multiple perspectives, which improves the generalization performance by extensive feature sets. Second, module adaption transfer (MAT) is designed to evaluate each module by the feature distributions of source and target samples, which can generate an optimal weight sharing strategy for each target subject and promote the model to learn domain-invariant and domain-specific features simultaneously. We conduct extensive experiments in two EEG recognition tasks, i.e., motor imagery (MI) and seizure prediction, on four datasets. Experimental results demonstrate that the proposed method achieves promising performance compared with the state-of-the-art methods, indicating a feasible solution for subject-specific EEG recognition tasks.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:硬件 1 区 计算机:理论方法 2 区 计算机:人工智能 2 区 工程:电子与电气
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 计算机:硬件 1 区 计算机:理论方法 2 区 计算机:人工智能 2 区 工程:电子与电气
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Q1 COMPUTER SCIENCE, THEORY & METHODS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, HARDWARE & ARCHITECTURE Q1 COMPUTER SCIENCE, THEORY & METHODS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China
通讯作者:
通讯机构: [2]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China [6]Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院