当前位置: 首页 > 详情页

A Feature Fusion Model Based on Temporal Convolutional Network for Automatic Sleep Staging Using Single-Channel EEG

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Xi An Jiao Tong Univ, Inst Biomed Engn, Sch Life Sci & Technol, Key Lab Biomed Informat Engn,Minist Educ, Xian 710049, Peoples R China [2]Sichuan Digital Econ Ind Dev Res Inst, Chengdu 610036, Peoples R China [3]Minist Civil Affairs, Key Lab Neuroinformat & Rehabil Engn, Xian 710049, Peoples R China [4]Xi An Jiao Tong Univ, Fac Elect & Informat Engn, Xian 710049, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China [6]Beijing Key Lab Neuromodulat, Beijing 100053, Peoples R China [7]Capital Med Univ, Inst Sleep & Consciousness Disorders, Beijing Inst Brain Disorders, Ctr Epilepsy, Beijing 100053, Peoples R China [8]Kyung Hee Univ, Dept Software Convergence, Yongin 17104, South Korea [9]Macau Univ Sci & Technol, Fac Innovat Engn, Taipa 999078, Peoples R China [10]Xi An Jiao Tong Univ, Inst Engn & Med Interdisciplinary Studies, Sch Mech Engn, Xian 710049, Peoples R China [11]Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
出处:
ISSN:

关键词: Sleep Electroencephalography Brain modeling Time-frequency analysis Feature extraction Continuous wavelet transforms Convolutional neural networks EEG feature fusion sleep staging tempo- ral convolutional network

摘要:
Sleep staging is a crucial task in sleep monitoring and diagnosis, but clinical sleep staging is both time-consuming and subjective. In this study, we proposed a novel deep learning algorithm named feature fusion temporal convolutional network (FFTCN) for automatic sleep staging using single-channel EEG data. This algorithm employed a one-dimensional convolutional neural network (1D-CNN) to extract temporal features from raw EEG, and a two-dimensional CNN (2D-CNN) to extract time-frequency features from spectrograms generated through continuous wavelet transform (CWT) at the epoch level. These features were subsequently fused and further fed into a temporal convolutional network (TCN) to classify sleep stages at the sequence level. Moreover, a two-step training strategy was used to enhance the model's performance on an imbalanced dataset. Our proposed method exhibits superior performance in the 5-class classification task for healthy subjects, as evaluated on the SHHS-1, Sleep-EDF-153, and ISRUC-S1 datasets. This work provided a straightforward and promising method for improving the accuracy of automatic sleep staging using only single-channel EEG, and the proposed method exhibited great potential for future applications in professional sleep monitoring, which could effectively alleviate the workload of sleep technicians.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2022]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 MEDICAL INFORMATICS
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Xi An Jiao Tong Univ, Inst Biomed Engn, Sch Life Sci & Technol, Key Lab Biomed Informat Engn,Minist Educ, Xian 710049, Peoples R China [2]Sichuan Digital Econ Ind Dev Res Inst, Chengdu 610036, Peoples R China [3]Minist Civil Affairs, Key Lab Neuroinformat & Rehabil Engn, Xian 710049, Peoples R China
通讯作者:
通讯机构: [1]Xi An Jiao Tong Univ, Inst Biomed Engn, Sch Life Sci & Technol, Key Lab Biomed Informat Engn,Minist Educ, Xian 710049, Peoples R China [2]Sichuan Digital Econ Ind Dev Res Inst, Chengdu 610036, Peoples R China [3]Minist Civil Affairs, Key Lab Neuroinformat & Rehabil Engn, Xian 710049, Peoples R China [10]Xi An Jiao Tong Univ, Inst Engn & Med Interdisciplinary Studies, Sch Mech Engn, Xian 710049, Peoples R China [11]Xi An Jiao Tong Univ, Sch Mech Engn, State Key Lab Mfg Syst Engn, Xian 710049, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院