Excessive secretion of human islet amyloid polypeptide (hIAPP) is an important pathological basis of diabetic encephalopathy (DE). In this study, we aimed to investigate the potential implications of hIAPP in DE pathogenesis. Brain magnetic resonance imaging and cognitive scales were applied to evaluate white matter damage and cognitive function. We found that the concentration of serum hIAPP was positively correlated with white matter damage but negatively correlated with cognitive scores in patients with type 2 diabetes mellitus. In vitro assays revealed that oligodendrocytes, compared with neurons, were more prone to acidosis under exogenous hIAPP stimulation. Moreover, western blotting and co-immunoprecipitation indicated that hIAPP interfered with the binding process of monocarboxylate transporter (MCT)1 to its accessory protein CD147 but had no effect on the binding of MCT2 to its accessory protein gp70. Proteomic differential analysis of proteins co-immunoprecipitated with CD147 in oligodendrocytes revealed Yeast Rab GTPase-Interacting protein 2 (YIPF2, which modulates the transfer of CD147 to the cell membrane) as a significant target. Furthermore, YIPF2 inhibition significantly improved hIAPP-induced acidosis in oligodendrocytes and alleviated cognitive dysfunction in DE model mice. These findings suggest that increased CD147 translocation by inhibition of YIPF2 optimizes MCT1 and CD147 binding, potentially ameliorating hIAPP-induced acidosis and the consequent DE-related demyelination.
基金:
MOE Key Laboratory of Bioinformatics, School of Life Sciences, Tsinghua University; National Natural Science Foundation of China [82100863]; Hebei Natural Science Foundation [H2020206643, H2020206105, C20210346]; Medical Science Research Project of Hebei Province [20211628]; Hebei Province Government-funded Excellent Talents Project in Clinical Medicine [ZF2023029]; Spark Scientific Research Project of the First Hospital of Hebei Medical University [XH202004]
第一作者机构:[1]Hebei Med Univ, Hebei Key Lab Brain Sci & Psychiat Psychol Dis, Hosp 1, Shijiazhuang, Hebei, Peoples R China[2]Hebei Med Univ, Hosp 1, Neuromed Technol Innovat Ctr Hebei Prov, Dept Neurol, Shijiazhuang 050000, Peoples R China
通讯作者:
通讯机构:[2]Hebei Med Univ, Hosp 1, Neuromed Technol Innovat Ctr Hebei Prov, Dept Neurol, Shijiazhuang 050000, Peoples R China[4]Capital Med Univ, Hebei Hosp, Dept Neurol, Xuanwu Hosp, Shijiazhuang 050000, Hebei, Peoples R China
推荐引用方式(GB/T 7714):
Zhang Nan,Ma Xiaoying,He Xinyu,et al.Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide[J].NEUROSCIENCE BULLETIN.2024,40(10):1403-1420.doi:10.1007/s12264-024-01263-6.
APA:
Zhang, Nan,Ma, Xiaoying,He, Xinyu,Zhang, Yaxin,Guo, Xin...&Xing, Yuan.(2024).Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide.NEUROSCIENCE BULLETIN,40,(10)
MLA:
Zhang, Nan,et al."Inhibition of YIPF2 Improves the Vulnerability of Oligodendrocytes to Human Islet Amyloid Polypeptide".NEUROSCIENCE BULLETIN 40..10(2024):1403-1420