当前位置: 首页 > 详情页

Disentangling normal and pathological brain atrophy for the diagnosis of mild cognitive impairment and Alzheimer's disease

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Ningbo Univ, Fac Elect Engn & Comp Sci, Zhejiang Engn Res Ctr Adv Mass Spectrometry & Clin, Zhejiang Key Lab Mobile Network Applicat Technol, Ningbo 315210, Peoples R China [2]Ningbo Univ, Affiliated Hosp 1, Dept Radiol, Ningbo, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing 100053, Peoples R China [4]Harbin Engn Univ, Dept Comp Sci & Technol, Harbin 150001, Peoples R China [5]Zhejiang Univ, Coll Biomed Engn & Instrument Sci, Dept Biomed Engn, Hangzhou 315210, Peoples R China [6]Xiamen Univ, Affiliated Hosp 1, Sch Med, Dept Radiol, Xiamen 361003, Peoples R China [7]Ningbo Univ, Hlth Sci Ctr, Ningbo, Zhejiang, Peoples R China
出处:
ISSN:

关键词: Atrophy disentanglement network Dual-task prediction module Feature orthogonality module Alzheimer's disease Mild cognitive impairment

摘要:
Alzheimer's disease (AD) is a progressive neurodegenerative disorder. Mild cognitive impairment (MCI) is the prodromal stage of AD. Accurate identification of these conditions is crucial for the early diagnosis of these diseases. Brain tissue atrophies, observable in regions such as the hippocampus and cortices, serve as an essential biomarker for MCI and AD. However, similar atrophies are also present in elderly individuals with normal cognitive function, albeit to a lesser extent, and can be found in other non-biomarker brain tissues. To address this challenge, we introduce an atrophy disentanglement network (AD-Net), designed to decouple age-related normal atrophies and disease-specific pathological atrophies in structural magnetic resonance imaging images. Specifically, we first design a dual-task prediction module, guiding the model to differentiate normal and pathological atrophies. Subsequently, we devise a feature orthogonality module for enhanced separation of the two types of atrophies. Our extensive experiments demonstrate that AD-Net outperforms existing methods, highlighting the efficiency of the devised dual-task prediction and feature orthogonality modules in disentangling normal and pathological image features and further improving the diagnosis for AD and MCI. The source code is publicly avaliable at https://github.com/CVAPPS24/ADNet.git.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2024]版:
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q1 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版]

第一作者:
第一作者机构: [1]Ningbo Univ, Fac Elect Engn & Comp Sci, Zhejiang Engn Res Ctr Adv Mass Spectrometry & Clin, Zhejiang Key Lab Mobile Network Applicat Technol, Ningbo 315210, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院