当前位置: 首页 > 详情页

Association of Peak Width of Skeletonized Mean Diffusivity With Neurofilament Light Chain in Non-Dementia Adults

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China. [2]Department of Neurology, Affiliated Hospital of Qingdao University, Qingdao, China. [3]Department of Neurology, Qingdao Municipal Hospital, Dalian Medical University, Dalian, China. [4]Department of Neurology and Innovation Center for Neurological Disorders, Xuanwu Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China. [5]Department of Neurology, Qingdao Municipal Hospital, Shandong Second Medical University, Weifang, Shandong, China.
出处:
ISSN:

关键词: cerebral small vessel disease neurodegenerative disorders neurofilament light chain peak width of skeletonized mean diffusivity

摘要:
Peak width of skeletonized mean diffusivity (PSMD) effectively reflects the mean diffusivity distribution across the white matter and is considered a novel biomarker for cerebral small vessel disease (CSVD). Neurofilament light chain (NFL) is observed to be released in neurodegenerative diseases with large myelinated axonal degeneration. In our research, we explored the relationship of PSMD with NFL levels in non-dementia adults. In the Alzheimer's Disease Neuroimaging Initiative, after adjusting for potential confounders, we used linear regression models to study the relationship of PSMD with plasma NFL levels in the total population and different white matter brain regions. Additionally, we analyzed the relationships in subgroups. Furthermore, we used a linear mixed effects model to assess the long-term effect of baseline PSMD on longitudinal changes in plasma NFL levels. The results showed that PSMD was correlated with elevated plasma NFL levels in the total population, with significant associations observed in late-life, APOE4 non-carriers, and A- (amyloid-negative) subgroups. Further analysis of different white matter brain regions revealed a correlation in the body of the corpus callosum, superior corona radiata, posterior thalamic radiation, sagittal stratum, fornix/stria terminalis, and superior fronto-occipital fasciculus. Moreover, individuals with higher PSMD demonstrated a faster increase in plasma NFL levels in the total population, which was significant in the late-life and A- subgroups. This study demonstrated that PSMD was associated with plasma NFL, suggesting that CSVD was related to neurodegenerative disorders, particularly in the body of the corpus callosum, superior corona radiata, posterior thalamic radiation, sagittal stratum, fornix/stria terminalis, and superior fronto-occipital fasciculus. At the same time, PSMD would exacerbate the damage to plasma NFL levels. These findings support the idea that plasma NFL may be a promising biomarker for CSVD.© 2025 International Society for Neurochemistry.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 生化与分子生物学 3 区 神经科学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 生化与分子生物学 3 区 神经科学
JCR分区:
出版当年[2023]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 NEUROSCIENCES
最新[2024]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 NEUROSCIENCES

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Department of Neurology, Qingdao Municipal Hospital, Qingdao University, Qingdao, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17708 今日访问量:0 总访问量:943 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院