当前位置: 首页 > 详情页

Exploration of Cytokines That Impact the Therapeutic Efficacy of Mesenchymal Stem Cells in Alzheimer's Disease

文献详情

资源类型:
Pubmed体系:
机构: [1]Stem Cell Biology and Regenerative Medicine Department, Yi-Chuang Institute of Bio-Industry, Beijing 100176, China. [2]Department of Anesthesiology, Xuanwu Hospital, Capital Medical University, Beijing 100053, China.
出处:
ISSN:

关键词: Alzheimer’s disease neuroinflammation cognition nerve regeneration mesenchymal stem cells

摘要:
Current therapies for Alzheimer's disease (AD) includes acetylcholinesterase inhibitors, NMDA receptor antagonists, and amyloid beta (Aβ)/Tau-targeting drugs. While these drugs improve cognitive decline and target the pathological mechanisms, their outcomes still are still in debate. Mesenchymal stem cells (MSCs) offer a regenerative approach by modulating neuroinflammation and promoting neuroprotection. Although the paracrine of MSCs is efficient in various AD preclinical studies and the exosomes of MSCs have entered clinical trials, the key cytokines driving the efficacy remain unclear. Here, we evaluated human umbilical cord-derived MSCs (hUC-MSCs) and employed gene-silenced MSCs (siHGF-MSCs, siTNFR1-MSCs, siBDNF-MSCs) in APP/PS1 AD mice to investigate specific mechanisms. hUC-MSCs significantly reduced Aβ/Tau pathology and neuroinflammation, with cytokine-specific contributions: silencing HGF predominantly reduced Aβ/Tau clearance, although silencing TNFR1 or BDNF showed modest effects; silencing TNFR1 or BDNF more prominently weakened anti-neuroinflammation, while silencing HGF exerted a weaker influence. All three cytokines partially contributed to oxidative stress reduction and cognitive improvements. Our study highlights MSC-driven AD alleviation as a multifactorial strategy and reveals specific cytokines alleviating different aspects of AD pathology.

基金:
语种:
PubmedID:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
最新[2025]版:
大类 | 3 区 医学
小类 | 3 区 工程:生物医学
第一作者:
第一作者机构: [1]Stem Cell Biology and Regenerative Medicine Department, Yi-Chuang Institute of Bio-Industry, Beijing 100176, China.
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17708 今日访问量:0 总访问量:943 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院