当前位置: 首页 > 详情页

Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Inovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China [2]Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA [3]Department of Physics, Oakland University, Rochester, Michigan, USA
出处:
ISSN:

关键词: microRNA neuron axonal growth

摘要:
Schwann cells actively interact with axons of dorsal root ganglia (DRG) neurons. Exosomes mediate intercellular communication by transferring their biomaterials, including microRNAs (miRs) into recipient cells. We hypothesized that exosomes derived from Schwann cells stimulated by high glucose (HG) exosomes accelerate development of diabetic peripheral neuropathy and that exosomal cargo miRs contribute to this process. We found that HG exosomes contained high levels of miR-28, -31a, and -130a compared to exosomes derived from non-HG-stimulated Schwann cells. In vitro, treatment of distal axons with HG exosomes resulted in reduction of axonal growth, which was associated with elevation of miR-28, -31a, and -130a and reduction of their target proteins of DNA methyltransferase-3, NUMB (an endocytic adaptor protein), synaptosome associated protein 25, and growth-associated protein-43 in axons. In vivo, administration of HG exosomes to sciatic nerves of diabetic db/db mice at 7 wk of age promoted occurrence of peripheral neuropathy characterized by impairment of nerve conduction velocity and induction of mechanic and thermal hypoesthesia, which was associated with substantial decreases in intraepidermal nerve fibers. Our findings demonstrate a functional role of exosomes derived from HG-stimulated Schwann cells in mediating development of diabetic peripheral neuropathy.Jia, L., Chopp, M., Wang, L., Lu, X., Szalad, A., Zhang, Z. G. Exosomes derived from high-glucose-stimulated Schwann cells promote development of diabetic peripheral neuropathy.

基金:

基金编号: R01 NS075084 R01 NS075156 R01 DK097519

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 生物
小类 | 2 区 生化与分子生物学 2 区 生物学 3 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 2 区 生物学 3 区 细胞生物学
JCR分区:
出版当年[2016]版:
Q1 BIOLOGY Q1 CELL BIOLOGY Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q1 BIOLOGY Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY Q2 CELL BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Inovation Center for Neurological Disorders, Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China [2]Department of Neurology, Henry Ford Hospital, Detroit, Michigan, USA
通讯作者:
通讯机构: [*1]Department of Neurology, Henry Ford Hospital, 2799 West Grand Blvd., Detroit, MI 48202, USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院