当前位置: 首页 > 详情页

A Stacked Sparse Autoencoder-Based Detector for Automatic Identification of Neuromagnetic High Frequency Oscillations in Epilepsy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA. [2]Department of Neurosurgery, Nanjing Brain Hospital, Nanjing 211166, China [3]Department of Neurology, Xuanwu Hospital, Beijing 100053, China. [4]the MEG Center, Department of Neurology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA [5]Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Cincinnati, OH 45229 USA [6]School of Information Science and Engineering,Xiamen University, Xiamen 361005, China [7]Key Laboratory for Information System Security, Beijing National Research Center for Information Science and Technology, Ministry of Education, School of Software, Tsinghua University, Beijing 100084, China.
出处:
ISSN:

关键词: High-frequency oscillations MEG SSAE brain deep learning model detector

摘要:
High-frequency oscillations (HFOs) are spontaneous magnetoencephalography (MEG) patterns that have been acknowledged as a putative biomarker to identify epileptic foci. Correct detection of HFOs in the MEG signals is crucial for the accurate and timely clinical evaluation. Since the visual examination of HFOs is time-consuming, error-prone, and with poor inter-reviewer reliability, an automatic HFOs detector is highly desirable in clinical practice. However, the existing approaches for HFOs detection may not be applicable for MEG signals with noisy background activity. Therefore, we employ the stacked sparse autoencoder (SSAE) and propose an SSAE-based MEG HFOs (SMO) detector to facilitate the clinical detection of HFOs. To the best of our knowledge, this is the first attempt to conduct HFOs detection in MEG using deep learning methods. After configuration optimization, our proposed SMO detector is outperformed other classic peermodels by achieving 89.9% in accuracy, 88.2% in sensitivity, and 91.6% in specificity. Furthermore, we have tested the performance consistency of ourmodel using various validation schemes. The distribution of performance metrics demonstrates that our model can achieve steady performance.

基金:

基金编号: 2017YFC0113000 R21NS072817 1R21NS081420-01A1

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 医学
小类 | 2 区 计算机:跨学科应用 2 区 工程:生物医学 2 区 工程:电子与电气 2 区 成像科学与照相技术 2 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 计算机:跨学科应用 1 区 工程:生物医学 1 区 工程:电子与电气 1 区 成像科学与照相技术 1 区 核医学
JCR分区:
出版当年[2016]版:
Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL Q1 ENGINEERING, ELECTRICAL & ELECTRONIC Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 IMAGING SCIENCE & PHOTOGRAPHIC TECHNOLOGY Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Department of Electrical Engineering and Computer Science, University of Cincinnati, Cincinnati, OH 45221 USA.
通讯作者:
通讯机构: [4]the MEG Center, Department of Neurology Cincinnati Children’s Hospital Medical Center, Cincinnati, OH 45229 USA [5]Cincinnati Children’s Hospital Medical Center, Department of Pediatrics, Cincinnati, OH 45229 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院