当前位置: 首页 > 详情页

A vascular tissue engineering scaffold with core-shell structured nano-fibers formed by coaxial electrospinning and its biocompatibility evaluation

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]School of Materials Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China [2]Xuanwu Hospital, Capital Medical University, Beijing 100053, People’s Republic of China
出处:
ISSN:

关键词: coaxial electrospinning core-shell structure vascular tissue engineering collagen scaffold

摘要:
In this article, a tubular vascular tissue engineering scaffold with core-shell structured fibers was produced by coaxial electrospinning at an appropriate flow rate ratio between the inner and outer solution. PCL was selected as the core to provide the mechanical property and integrity to the scaffold while collagen was used as the shell to improve the attachment and proliferation of vascular cells due to its excellent biocompatibility. The fine core-shell structured fibers were demonstrated by scanning electron microscope and transmission electron microscope observations. Subsequently, the collagen shell was crosslinked by genipin and further bound with heparin. The crosslinking process was confirmed by the increasing of tensile strength, swelling ratio and thermogravimetric analysis measurements while the surface heparin content was characterized by means of a UV-spectrophotometer and activated partial thromboplastin time tests. Furthermore, the mechanical properties such as stitch strength and bursting pressure of the as-prepared scaffold were measured. Moreover, the biocompatibility of the scaffold was evaluated by cytotoxicity investigation with L929 cells via MTT assay. Endothelial cell adhesion assessments were conducted to reveal the possibility of the formation of an endothelial cell layer on the scaffold surface, while the ability of smooth muscle cell penetration into the scaffold wall was also assessed by confocal laser scanning microscopy. The as-prepared core-shell structured scaffold showed promising potential for use in vascular tissue engineering.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2015]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学 3 区 材料科学:生物材料
最新[2023]版:
大类 | 3 区 医学
小类 | 4 区 工程:生物医学 4 区 材料科学:生物材料
JCR分区:
出版当年[2014]版:
Q1 ENGINEERING, BIOMEDICAL Q2 MATERIALS SCIENCE, BIOMATERIALS
最新[2023]版:
Q2 ENGINEERING, BIOMEDICAL Q3 MATERIALS SCIENCE, BIOMATERIALS

影响因子: 最新[2023版] 最新五年平均 出版当年[2014版] 出版当年五年平均 出版前一年[2013版] 出版后一年[2015版]

第一作者:
第一作者机构: [1]School of Materials Science, Beijing Institute of Technology, Beijing 100081, People’s Republic of China
共同第一作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院