当前位置: 首页 > 详情页

Tolerance induction between two different strains of parental mice prevents graft-versus-host disease in haploidentical hematopoietic stem cell transplantation to F1 mice

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People’s Republic of China [b]Department of Microbiology & Immunology, Medical University of South Carolina, Charleston, SC 29425, USA
出处:
ISSN:

关键词: Haploidentical Hematopoietic stem cell transplantation Immune tolerance Graft-versus-host disease Dendritic cells Regulatory T cells

摘要:
Haploidentical hematopoietic stem cell transplantation (Haplo-HSCT) has been employed worldwide in recent years and led to favorable outcome in a group of patients who do not have human leukocyte antigen (HLA)-matched donors. However, the high incidence of severe graft-versus-host disease (GVHD) is a major problem for Haplo-HSCT. In the current study, we performed a proof of concept mouse study to test whether induction of allogeneic tolerance between two different parental strains was able to attenuate GVHD in Haplo-HSCT to theF1mice. We induced alloantigen tolerance in OH mice (H-2k) using ultraviolet B (UVB) irradiated immature dendritic cells (iDCs) derived from the cultures of Balb/c bone marrow cells. Then, we performed Haplo-HSCT using tolerant C3H mice as donors toF1mice (C3H x Balb/c). The results demonstrated that this approach markedly reduced GVHD-associated death and significantly prolonged the survival of recipient mice in contrast to the groups with donors (C3H mice) that received infusion of non-UVB-irradiated DCs. Further studies showed that there were enhanced Tregs in the tolerant mice and alloantigen-specific T cell response was skewed to more IL-10-producing T cells, suggesting that these regulatory T cells might have contributed to the attenuation of GVHD. This study suggests that it is a feasible approach to preventing GVHD in Haplo-HSCT in children by pre-induction of alloantigen tolerance between the two parents. This concept may also lead to more opportunities in cell-based immunotherapy for GVHD post Haplo-HSCT. (C) 2014 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 3 区 生物
小类 | 4 区 生化与分子生物学 4 区 生物物理
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 生物物理 4 区 生化与分子生物学
JCR分区:
出版当年[2012]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [a]Department of Hematology, Xuanwu Hospital, Capital Medical University, Beijing 100053, People’s Republic of China
通讯作者:
通讯机构: [*1]Department of Hematology, Xuanwu Hospital, Capital Medical University, #45 Changchun Street, Xicheng District, Beijing 100053, People’s Republic of China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院