当前位置: 首页 > 详情页

Skeleton Cuts-An Efficient Segmentation Method for Volume Rendering

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Institute of Automation, Chinese Academy of Sciences and Graduate University of Chinese Academy of Sciences, Beijing 100190, China. [2]Medical Image Processing Group, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China. [3]Radiology Department, Xuanwu Hospital, Capital Medical University, No. 45 Changchun Street, Beijing 100053, China. [4]Department of Computer Science, University of Hull, Hull HU67RX, United Kingdom. [5]the Paul C. Lauterbur Biomedical Imaging Center, Institute of Biomedical and Health Engineering and Shenzhen Institute of Advanced Technology, Chinese Academy of Sciences, Shenzhen 518067, China.
出处:
ISSN:

关键词: Volume rendering classification skeleton cuts segmentation localized transfer function

摘要:
Volume rendering has long been used as a key technique for volume data visualization, which works by using a transfer function to map color and opacity to each voxel. Many volume rendering approaches proposed so far for voxels classification have been limited in a single global transfer function, which is in general unable to properly visualize interesting structures. In this paper, we propose a localized volume data visualization approach which regards volume visualization as a combination of two mutually related processes: the segmentation of interesting structures and the visualization using a locally designed transfer function for each individual structure of interest. As shown in our work, a new interactive segmentation algorithm is advanced via skeletons to properly categorize interesting structures. In addition, a localized transfer function is subsequently presented to assign visual parameters via interesting information such as intensity, thickness, and distance. As can be seen from the experimental results, the proposed techniques allow us to appropriately visualize interesting structures in highly complex volume medical data sets.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2010]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:软件工程
最新[2025]版:
大类 | 2 区 计算机科学
小类 | 1 区 计算机:软件工程
JCR分区:
出版当年[2009]版:
Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING
最新[2023]版:
Q1 COMPUTER SCIENCE, SOFTWARE ENGINEERING

影响因子: 最新[2023版] 最新五年平均 出版当年[2009版] 出版当年五年平均 出版前一年[2008版] 出版后一年[2010版]

第一作者:
第一作者机构: [1]Institute of Automation, Chinese Academy of Sciences and Graduate University of Chinese Academy of Sciences, Beijing 100190, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17143 今日访问量:0 总访问量:924 更新日期:2025-05-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院