当前位置: 首页 > 详情页

A wearable mixed-reality holographic computer for guiding external ventricular drain insertion at the bedside.

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University [2]Department of Neurosurgery, Chinese PLA General Hospital [3]Beijing Key Laboratory of Intelligent Information Technology, School of Computer Science, Beijing Institute of Technology, Beijing, People’s Republic of China
出处:
ISSN:

关键词: external ventricular drain hologram 3D Slicer surgical planning surgical technique

摘要:
OBJECTIVE: The goal of this study was to explore the feasibility and accuracy of using a wearable mixed-reality holographic computer to guide external ventricular drain (EVD) insertion and thus improve on the accuracy of the classic freehand insertion method for EVD insertion. The authors also sought to provide a clinically applicable workflow demonstration. METHODS: Pre- and postoperative CT scanning were performed routinely by the authors for every patient who needed EVD insertion. Hologram-guided EVD placement was prospectively applied in 15 patients between August and November 2017. During surgical planning, model reconstruction and trajectory calculation for each patient were completed using preoperative CT. By wearing a Microsoft HoloLens, the neurosurgeon was able to visualize the preoperative CT-generated holograms of the surgical plan and perform EVD placement by keeping the catheter aligned with the holographic trajectory. Fifteen patients who had undergone classic freehand EVD insertion were retrospectively included as controls. The feasibility and accuracy of the hologram-guided technique were evaluated by comparing the time required, number of passes, and target deviation for hologram-guided EVD placement with those for classic freehand EVD insertion. RESULTS: Surgical planning and hologram visualization were performed in all 15 cases in which EVD insertion involved holographic guidance. No adverse events related to the hologram-guided procedures were observed. The mean ± SD additional time before the surgical part of the procedure began was 40.20 ± 10.74 minutes. The average number of passes was 1.07 ± 0.258 in the holographic guidance group, compared with 2.33 ± 0.98 in the control group (p < 0.01). The mean target deviation was 4.34 ± 1.63 mm in the holographic guidance group and 11.26 ± 4.83 mm in the control group (p < 0.01). CONCLUSIONS: This study demonstrates the use of a head-mounted mixed-reality holographic computer to successfully perform hologram-assisted bedside EVD insertion. A full set of clinically applicable workflow images is presented to show how medical imaging data can be used by the neurosurgeon to visualize patient-specific holograms that can intuitively guide hands-on operation. The authors also provide preliminary confirmation of the feasibility and accuracy of this hologram-guided EVD insertion technique.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 医学
小类 | 2 区 临床神经病学 2 区 外科
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 临床神经病学 2 区 外科
JCR分区:
出版当年[2017]版:
Q1 SURGERY Q1 CLINICAL NEUROLOGY
最新[2023]版:
Q1 CLINICAL NEUROLOGY Q1 SURGERY

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University
通讯作者:
通讯机构: [1]Department of Neurosurgery, Xuanwu Hospital, Capital Medical University [*1]Xuanwu Hospital, Beijing, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17069 今日访问量:0 总访问量:916 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院