当前位置: 首页 > 详情页

Ictal High-Frequency Oscillation for Lateralizing Patients With Suspected Bitemporal Epilepsy Using Wavelet Transform and Granger Causality Analysis

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, [2]Beijing Key Laboratory of Neuromodulation, Beijing, China, [3]Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China, [4]Department of Functional Neurosurgery, Xuanwu Hospital, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: bilateral temporal epilepsy localization lateralization wavelet transform Granger causality

摘要:
Identifying lateralization of bilateral temporal lobe epilepsy (TLE) is a challenging issue; scalp electroencephalography (EEG) and routine band electrocorticography (ECoG) fail to reveal the epileptogenic focus for further temporal lobectomy treatment. High-frequency oscillations (HFOs) can be utilized as a biomarker for lateralizing the onset zone in suspected bitemporal epilepsy. Except subjective vision detect the HFOs, objective verification should be performed to raise the accuracy. In the present research, we prospectively studied 10 patients with refractory temporal seizures and who underwent ECoG with wide-band frequency amplifiers (2,048 Hz); all patients had a class I outcome after temporal resection. Pre- and ictal HFOs will be analyzed by wavelet transform (WT) and Granger causality (GC) to objectively verify lateralization of the seizure onset zone (SOZ). WT analysis showed ictal HFOs in 10 patients mainly covered from 80 to 115 Hz (average, 92.59 +/- 10.23 Hz), and there was distinct bandpass boundary between pre-ictal HFOs and ictal HFOs. GC analysis showed five patients (2, 4, 5, 6, and 7), no matter the pre-ictal or ictal state, had the highest GC degree in SOZ itself. The remaining patients (1, 3, 8, 9, and 10) had the highest GC degree in SOZ with its adjacent regions in the pre-ictal and ictal stages. GC analysis further confirmed the result of the WT and suggested HFOs are initiated and propagated in the local brain region mainly, afterward, transmitting to adjacent brain regions. These results indicated that the combination of WT and GC analyses significantly contributes to accurate lateralization in patients with suspected bitemporal epilepsy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 医学
小类 | 2 区 数学与计算生物学 3 区 神经科学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 数学与计算生物学 4 区 神经科学
JCR分区:
出版当年[2017]版:
Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q2 NEUROSCIENCES
最新[2023]版:
Q2 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, [2]Beijing Key Laboratory of Neuromodulation, Beijing, China, [3]Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China, [2]Beijing Key Laboratory of Neuromodulation, Beijing, China, [3]Center of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China,
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17070 今日访问量:0 总访问量:919 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院