当前位置: 首页 > 详情页

Classifying MCI Subtypes in Community-Dwelling Elderly Using Cross-Sectional and Longitudinal MRI-Based Biomarkers

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China; [2]Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China; [3]Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China; [4]Univ New South Wales, Sch Psychiat, Ctr Hlth Brain Ageing, Sydney, NSW, Australia; [5]Prince Wales Hosp, Neuropsychiat Inst, Sydney, NSW, Australia; [6]Univ Sydney, Fac Engn & Informat Technol, UBTech Sydney Artificial Intelligence Inst, Darlington, NSW, Australia; [7]Univ Sydney, Fac Engn & Informat Technol, Sch Informat Technol, Darlington, NSW, Australia; [8]Capital Med Univ, Beijing Tiantan Hosp, Beijing, Peoples R China; [9]NICHD, NIBIB, NIH, Bethesda, MD 20894 USA; [10]Univ New South Wales, Dementia Collaborat Res Ctr, Sydney, NSW, Australia
出处:
ISSN:

关键词: mild cognitive impairment longitudinal data early diagnosis MRI biomarker feature selection machine learning

摘要:
Amnestic MCI (aMCI) and non-amnestic MCI (naMCI) are considered to differ in etiology and outcome. Accurately classifying MCI into meaningful subtypes would enable early intervention with targeted treatment. In this study, we employed structural magnetic resonance imaging (MRI) for MCI subtype classification. This was carried out in a sample of 184 community-dwelling individuals (aged 73-85 years). Cortical surface based measurements were computed from longitudinal and cross-sectional scans. By introducing a feature selection algorithm, we identified a set of discriminative features, and further investigated the temporal patterns of these features. A voting classifier was trained and evaluated via 10 iterations of cross-validation. The best classification accuracies achieved were: 77% (naMCI vs. aMCI), 81% (aMCI vs. cognitively normal (CN)) and 70% (naMCI vs. CN). The best results for differentiating aMCI from naMCI were achieved with baseline features. Hippocampus, amygdala and frontal pole were found to be most discriminative for classifying MCI subtypes. Additionally, we observed the dynamics of classification of several MRI biomarkers. Learning the dynamics of atrophy may aid in the development of better biomarkers, as it may track the progression of cognitive impairment.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 2 区 医学
小类 | 2 区 老年医学 3 区 神经科学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 老年医学 3 区 神经科学
JCR分区:
出版当年[2015]版:
Q1 NEUROSCIENCES Q1 GERIATRICS & GERONTOLOGY
最新[2023]版:
Q2 NEUROSCIENCES Q2 GERIATRICS & GERONTOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China;
通讯作者:
通讯机构: [1]Beihang Univ, Sch Biol Sci & Med Engn, Beijing, Peoples R China; [2]Beijing Adv Innovat Ctr Big Data Based Precis Med, Beijing, Peoples R China; [3]Beijing Adv Innovat Ctr Biomed Engn, Beijing, Peoples R China; [9]NICHD, NIBIB, NIH, Bethesda, MD 20894 USA;
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院