当前位置: 首页 > 详情页

Knowledge-Based Machine Learning for Glaucoma Diagnosis from Fundus Image Data

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China; [2]Capital Med Univ, Beijing Childrens Hosp, Dept Ophthalmol, Natl Key Discipline Pediat,Minist Educ, Beijing 100045, Peoples R China; [3]Northwest A&F Univ, Sch Sci, Yangling 712100, Peoples R China; [4]City Univ Hong Kong, Dept Syst Engn & Engn Management, Hong Kong, Hong Kong, Peoples R China; [5]Cent S Univ, State Key Lab High Performance Complex Mfg, Changsha 410083, Peoples R China
出处:
ISSN:

关键词: Machine Learning Glaucoma Diagnosis Fundus Image ISNT Rule

摘要:
In recent years, the computer-aided diagnosis of glaucoma has seen great developmental strides. In this paper, we present algorithms for glaucoma diagnosis from fundus images by incorporating doctors' knowledge into algorithm development. We extract features of the fundus images from optic disc and optic cup boundary lines that were drawn by doctors, and from these features, predictions are made. To the optic disc and optic cup boundary lines, we meticulously divide the area based on doctors' knowledge and then conduct principal component analysis to extract the features. The extracted features correspond well with doctors' knowledge so that the diagnostic results can be intuitively explained, rather than just generate a black-box forecast. On a real sample set, the proposed feature extraction and diagnosis algorithms achieve good mean prediction accuracy.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 4 区 医学
小类 | 4 区 数学与计算生物学 4 区 核医学
最新[2023]版:
JCR分区:
出版当年[2012]版:
Q4 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q4 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China;
通讯作者:
通讯机构: [1]Beijing Univ Chem Technol, Dept Math, Beijing 100029, Peoples R China;
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16408 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院