当前位置: 首页 > 详情页

Investigation of the optimal suspension culture time for the osteoblastic differentiation of human induced pluripotent stem cells using the embryoid body method

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China [2]College of Life Sciences, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China [3]Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
出处:
ISSN:

关键词: Human induced pluripotent stem cells Osteogenic differentiation Embryoid body Suspension time

摘要:
The differentiation of human induced pluripotent stern cells (hiPSCs) into osteoblasts provides a new paradigm in the field of bone tissue regeneration. The embryoid body (EB) differentiation method is commonly used for the osteogenic differentiation of hiPSCs. However, the spontaneous differentiation process of EBs is poorly understood, as evidenced by the inconsistency of the suspension time among previously reported studies as well as the low osteoblastic differentiation efficiency of hiPSCs. In the present study, we investigated the effects of the suspension culture time of EBs on the osteogenic differentiation of hiPSCs. Under chemically defined conditions, the expression of key genes related to presomitic mesoderm, neural crest, mesenchymal and pre-osteoblast cells in EBs derived from hiPSCs was examined daily by quantitative RT-PCR. Then, EBs with varying times in suspension (3, 5, 7 or 10 days) were attached onto gelatine surfaces, and their osteoblastic differentiation efficiencies after 14 days of culture in osteogenic induction medium were determined. Our results showed that EBs derived from hiPSCs subjected to 4 days of suspension culture produced the most mesenchymal stem cells, and exhibited the best osteogenic differentiation efficiency. Our research is valuable to standardizing, the time in suspension for the osteogenic differentiation of hiPSCs through the EB method, and facilitated the development of a high-efficiency in vitro osteogenic differentiation system for hiPSCs. (C) 2019 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 3 区 生物
小类 | 3 区 生物物理 4 区 生化与分子生物学
最新[2023]版:
大类 | 3 区 生物学
小类 | 3 区 生物物理 4 区 生化与分子生物学
JCR分区:
出版当年[2017]版:
Q2 BIOPHYSICS Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [1]School of Stomatology, Lanzhou University, No.222 Tianshui South Road, Chengguan District, Lanzhou, 730000, China
通讯作者:
通讯机构: [3]Beijing Lab for Cardiovascular Precision Medicine, Anzhen Hospital, Capital Medical University, 2 Anzhen Road, Chaoyang District, Beijing, 100029, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院