当前位置: 首页 > 详情页

An impaired hepatic clock system effects lipid metabolism in rats with nephropathy

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730 [2]Department of Nephrology, Capital Medical University Affiliated with Beijing Anzhen Hospital, Beijing 100029 [3]Department of Nephrology, The Second Affiliated Hospital, School of Medicine Zhejiang University, Hangzhou, Zhejiang 310009, P.R. China
出处:
ISSN:

关键词: nephrotic syndrome circadian rhythm clock-controlled genes blood lipid bioinformatics

摘要:
Hyperlipidemia is a key clinical feature in patients with nephrotic syndrome (NS) that is associated with the incidence of cardiovascular events. Recent studies have suggested that the disorders of triglycerides, gluconeogenesis and liver glucose metabolism are associated with the abnormal transcription of clock genes. However, changes to the circadian rhythm of blood lipids in NS require further exploration, and the effects of NS on the hepatic clock system remain to be elucidated. In the present study, the impaired diurnal rhythm of the hepatic core clock genes (BMAL1, CLOCK, CRY1, CRY2, PER1 and PER2) significantly induced circadian rhythm abnormalities in liver-specific clock-controlled genes (LXR, CYP7A1, SREBP-1, ABCA1, DEC1 and DEC2; all P<0.05), which were significantly associated with the abnormal diurnal rhythms of triglyceride, total cholesterol, aspartate aminotransferase and alanine aminotransferase (all P<0.05) in rats with Adriamycin-induced nephropathy. Furthermore, a protein-protein interaction network was identified. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses based on the human database was conducted to obtain signaling pathway and correlation prediction analyses of overall human clock and clock-controlled gene correlations. Strong correlations of the aforementioned clock genes were detected (avg. local clustering coefficient, 0.849) which suggested significant enrichment in circadian rhythm signaling. The present results indicated that damage to hepatic clock systems may impact blood lipid circadian rhythm disorders in NS, and offer a starting point for understanding the crosstalk between peripheral organs and peripheral clock systems.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 3 区 医学
小类 | 4 区 医学:研究与实验
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 医学:研究与实验
JCR分区:
出版当年[2016]版:
Q3 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730
通讯作者:
通讯机构: [1]Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100730 [*1]Department of Nephrology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, 1 Shuaifuyuan, Beijing 100730, P.R. China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17292 今日访问量:0 总访问量:929 更新日期:2025-06-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院