当前位置: 首页 > 详情页

Aqueous outflow regulation: Optical coherence tomography implicates pressure-dependent tissue motion

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Univ Washington, Dept Bioengn, Seattle, WA 98195 USA; [2]Univ Washington, Dept Ophthalmol, Seattle, WA 98195 USA; [3]Capital Med Univ, Beijing Anzhen Hosp, Dept Ophthalmol, Beijing, Peoples R China; [4]Cook Cty Hosp Syst, Dept Ophthalmol, Chicago, IL USA; [5]Univ Washington, Dept Ophthalmol, Inst Eye, 1259 NE Pacific St,HSB T163KBox 357190, Seattle, WA 98195 USA
出处:
ISSN:

关键词: Glaucoma Aqueous Intraocular pressure Schlemm's canal Trabecular meshwork Collector channels Lymphatics Pulsatile flow Optical coherence tomography

摘要:
Glaucoma is a leading cause of blindness worldwide and results from damage to the optic nerve. Currently, intraocular pressure is the only treatable risk factor. Changes in aqueous outflow regulate pressure; regulation becomes abnormal in glaucoma. From inside the eye aqueous flows out through the trabecular meshwork into a venous sinus called Schlemm's canal, next into collector channels and finally returns to the episcleral vessels of the venous system. The location of aqueous outflow regulation is unknown. Ex vivo and in vivo studies implicate both pressure-dependent trabecular tissue motion and tissues distal to Schlemm's canal in regulation of aqueous outflow. Technologies have not previously been available to study these issues. New ex vivo imaging in human eyes identifies hinged flaps or leaflets at collector channel entrances using a high-resolution spectral domain optical coherence tomography (SD-OCT) platform. The hinged flaps open and close in synchrony with pressure-dependent trabecular meshwork motion. The SD-OCT platform images from the trabecular meshwork surface while experimentally changing transtrabecular pressure gradients. New in vivo imaging in human eyes uses a motion sensitive technology, phase-sensitive OCT to quantitate real-time pulse-dependent trabecular tissue motion as well as absence of such motion when aqueous access to the outflow system is blocked. The recent studies suggest that aqueous outflow regulation results from synchronous pressure-dependent motion involving a network of interconnected tissues including those distal to Schlemm's canal. The new imaging technologies may shed light on glaucoma mechanisms and provide guidance in the management of medical, laser and surgical decisions in glaucoma. (C) 2016 The Authors. Published by Elsevier Ltd.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2016]版:
大类 | 3 区 医学
小类 | 2 区 眼科学
最新[2025]版:
大类 | 3 区 医学
小类 | 2 区 眼科学
JCR分区:
出版当年[2015]版:
Q1 OPHTHALMOLOGY
最新[2023]版:
Q1 OPHTHALMOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2015版] 出版当年五年平均 出版前一年[2014版] 出版后一年[2016版]

第一作者:
第一作者机构: [1]Univ Washington, Dept Bioengn, Seattle, WA 98195 USA; [3]Capital Med Univ, Beijing Anzhen Hosp, Dept Ophthalmol, Beijing, Peoples R China;
通讯作者:
通讯机构: [2]Univ Washington, Dept Ophthalmol, Seattle, WA 98195 USA; [5]Univ Washington, Dept Ophthalmol, Inst Eye, 1259 NE Pacific St,HSB T163KBox 357190, Seattle, WA 98195 USA
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17000 今日访问量:0 总访问量:905 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院