当前位置: 首页 > 详情页

Ambra1 modulates starvation-induced autophagy through AMPK signaling pathway in cardiomyocytes

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Capital Univ Med Sci, Beijing Anzhen Hosp, Beijing 100029, Peoples R China; [2]Baotou Fourth Hosp, Baoutou, Inner Mongolia, Peoples R China; [3]Inner Mongolia Med Univ, Affiliated Hosp, Image Sect, Hohhot, Inner Mongolia, Peoples R China; [4]Inner Mongolia Med Univ, Teaching & Res Sect Human Anat & Histol, Hohhot, Inner Mongolia, Peoples R China
出处:
ISSN:

关键词: Autophagy Ambra1 Cardiomyocytes

摘要:
Recent research has revealed a role for Ambra1, an autophagy-related gene-related (ATG) protein, in the autophagic pro-survival response, and Ambra1 has been shown to regulate Beclin1 and Beclin1-dependent autophagy in embryonic stem cells and cancer cells. However, whether Ambra1 plays an important role in the autophagy pathway in cardiomyocytes is unknown. In this study, we hypothesized that Ambra1 is an important regulator of autophagy and apoptosis in cardiomyocytes. To test this hypothesis, we confirmed autophagic activity in serum-starved cardiomyocytes by assessing endogenous microtubule-associated protein 1 light chain 3 (LC3) localization, the presence of autophagosomes and LC3 protein levels. Cell apoptosis and viability were measured by annexin-V and PI staining and MTT assays. We determined that serum deprivation-induced autophagy was associated with Ambra1 upregulation in cardiomyocytes. When Ambra1 expression was reduced by siRNA, the cardiomyocytes were more sensitive to staurosporine-induced apoptosis. In addition, co-immunoprecipitation of Ambra1 and Beclin1 demonstrated that Ambra1 and Beclin1 interact in serum-starved or rapamycin-treated cardiomyocytes, suggesting that Ambra1 regulates autophagy in cardiomyocytes by interacting with Beclin1. Finally, we determined that starvation stress-induced activation of Ambra1 contributes to the attenuation of adaptive AMP-activated protein kinase (AMPK) signaling. In conclusion, Ambra1 is a crucial regulator of autophagy and apoptosis through AMPK signaling pathway in cardiomyocytes that maintains the balance between autophagy and apoptosis. (C) 2014 Elsevier Inc. All rights reserved.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2013]版:
大类 | 3 区 生物
小类 | 4 区 生化与分子生物学 4 区 生物物理
最新[2025]版:
大类 | 4 区 生物学
小类 | 4 区 生化与分子生物学 4 区 生物物理
JCR分区:
出版当年[2012]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS
最新[2023]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY Q3 BIOPHYSICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2012版] 出版当年五年平均 出版前一年[2011版] 出版后一年[2013版]

第一作者:
第一作者机构: [2]Baotou Fourth Hosp, Baoutou, Inner Mongolia, Peoples R China;
通讯作者:
通讯机构: [1]Capital Univ Med Sci, Beijing Anzhen Hosp, Beijing 100029, Peoples R China;
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17070 今日访问量:0 总访问量:919 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院