当前位置: 首页 > 详情页

Individualized discrimination of tumor recurrence from radiation necrosis in glioma patients using an integrated radiomics-based model

文献详情

资源类型:
机构: [a]Department of Nuclear Medicine, Beijing Tiantan Hospital, Capital Medical University, 119, West Road of South 4th Ring, Fengtai District, Beijing, China [b]Department of PET/MR Advanced Application, GE Healthcare, Beijing, China
出处:
ISSN:

关键词: Glioma MRI PET Radiomics Recurrence

摘要:
Purpose: To develop and validate an integrated model for discriminating tumor recurrence from radiation necrosis in glioma patients. Methods: Data from 160 pathologically confirmed glioma patients were analyzed. The diagnostic model was developed in a primary cohort (n = 112). Textural features were extracted from postoperative 18F-fluorodeoxyglucose (18F-FDG) positron emission tomography (PET), 11C-methionine (11C-MET) PET, and magnetic resonance images. The least absolute shrinkage and selection operator regression model was used for feature selection and radiomics signature building. Multivariable logistic regression analysis was used to develop a model for predicting tumor recurrence. The radiomics signature, quantitative PET parameters, and clinical risk factors were incorporated in the model. The clinical value of the model was then assessed in an independent validation cohort using the remaining 48 glioma patients. Results: The integrated model consisting of 15 selected features was significantly associated with postoperative tumor recurrence (p < 0.001 for both primary and validation cohorts). Predictors contained in the individualized diagnosis model included the radiomics signature, the mean of tumor-background ratio (TBR) of 18F-FDG, maximum of TBR of 11C-MET PET, and patient age. The integrated model demonstrated good discrimination, with an area under the curve (AUC) of 0.988, with a 95% confidence interval (CI) of 0.975–1.000. Application in the validation cohort showed good differentiation (AUC of 0.914 and 95% CI of 0.881–0.945). Decision curve analysis showed that the integrated diagnosis model was clinically useful. Conclusions: Our developed model could be used to assist the postoperative individualized diagnosis of tumor recurrence in patients with gliomas. © 2019, The Author(s).

基金:
语种:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 1 区 医学
小类 | 1 区 核医学
最新[2023]版:
大类 | 1 区 医学
小类 | 1 区 核医学
第一作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院