当前位置: 首页 > 详情页

Individual [18F]FDG PET and functional MRI based on simultaneous PET/MRI may predict seizure recurrence after temporal lobe epilepsy surgery.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China [2]Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China [3]Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
出处:
ISSN:

关键词: Temporal lobe epilepsy  Prognosis  Metabolism  Functional magnetic resonance imaging  Machine learning

摘要:
To investigate the individual measures of brain glucose metabolism, neural activity obtained from simultaneous 18[F]FDG PET/MRI, and their association with surgical outcomes in medial temporal lobe epilepsy due to hippocampal sclerosis (mTLE-HS).Thirty-nine unilateral mTLE-HS patients who underwent anterior temporal lobectomy were classified as having completely seizure-free (Engel class IA; n = 22) or non-seizure-free (Engel class IB-IV; n = 17) outcomes at 1 year after surgery. Preoperative [18F]FDG PET and functional MRI (fMRI) were obtained from a simultaneous PET/MRI scanner, and individual glucose metabolism and fractional amplitude of low-frequency fluctuation (fALFF) were evaluated by standardizing these with respect to healthy controls. These abnormality measures and clinical data from each patient were incorporated into a machine learning framework (gradient boosting decision tree and logistic regression analysis) to estimate seizure recurrence. The predictive values of features were evaluated by the receiver operating characteristic (ROC) curve in the training and test cohorts.The machine learning classification model showed [18F]FDG PET and fMRI variations in contralateral hippocampal network and age of onset identify unfavorable surgical outcomes effectively. In the validation dataset, the logistic regression model with [18F]FDG PET and fALFF obtained from simultaneous [18F]FDG PET/MRI gained the maximum area under the ROC curve of 0.905 for seizure recurrence, higher than 0.762 with 18[F]-FDG PET, and 0.810 with fALFF alone.Machine learning model suggests individual [18F]FDG PET and fMRI variations in contralateral hippocampal network based on 18[F]-FDG PET/MRI could serve as a potential biomarker of unfavorable surgical outcomes.• Individual [18F]FDG PET and fMRI obtained from preoperative [18F]FDG PET/MR were investigated. • Individual differences were further assessed based on a seizure propagation network. • Machine learning can classify surgical outcomes with 90.5% accuracy.© 2021. The Author(s), under exclusive licence to European Society of Radiology.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2023]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2020]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Radiology and Nuclear Medicine, Xuanwu Hospital Capital Medical University, Beijing 100053, China [3]Key Laboratory of Magnetic Resonance Imaging and Brain Informatics, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院