当前位置: 首页 > 详情页

MRI features can predict EGFR expression in lower grade gliomas: A voxel-based radiomic analysis

文献详情

资源类型:

收录情况: ◇ SCIE

机构: [1]Beijing Neurosurgical Institute, Capital Medical University, 6 Tiantanxili, Beijing 100050, China [2]Institute of Automation, Chinese Academy of Sciences, Beijing, China [3]Department of Neuroradiology, Beijing Tiantan Hospital, Beijing, China [4]Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantanxili, Beijing 100050, China
出处:
ISSN:

关键词: Radiomics Lower grade glioma EGFR MRI Prediction

摘要:
To identify the magnetic resonance imaging (MRI) features associated with epidermal growth factor (EGFR) expression level in lower grade gliomas using radiomic analysis. 270 lower grade glioma patients with known EGFR expression status were randomly assigned into training (n=200) and validation (n=70) sets, and were subjected to feature extraction. Using a logistic regression model, a signature of MRI features was identified to be predictive of the EGFR expression level in lower grade gliomas in the training set, and the accuracy of prediction was assessed in the validation set. A signature of 41 MRI features achieved accuracies of 82.5% (area under the curve [AUC] = 0.90) in the training set and 90.0% (AUC = 0.95) in the validation set. This radiomic signature consisted of 25 first-order statistics or related wavelet features (including range, standard deviation, uniformity, variance), one shape and size-based feature (spherical disproportion), and 15 textural features or related wavelet features (including sum variance, sum entropy, run percentage). A radiomic signature allowing for the prediction of the EGFR expression level in patients with lower grade glioma was identified, suggesting that using tumour-derived radiological features for predicting genomic information is feasible. aEuro cent EGFR expression status is an important biomarker for gliomas. aEuro cent EGFR in lower grade gliomas could be predicted using radiogenomic analysis. aEuro cent A logistic regression model is an efficient approach for analysing radiomic features.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2017]版:
大类 | 2 区 医学
小类 | 2 区 核医学
最新[2025]版:
大类 | 2 区 医学
小类 | 2 区 核医学
JCR分区:
出版当年[2016]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2024]版:
Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2024版] 最新五年平均 出版当年[2016版] 出版当年五年平均 出版前一年[2015版] 出版后一年[2017版]

第一作者:
第一作者机构: [1]Beijing Neurosurgical Institute, Capital Medical University, 6 Tiantanxili, Beijing 100050, China
共同第一作者:
通讯作者:
通讯机构: [1]Beijing Neurosurgical Institute, Capital Medical University, 6 Tiantanxili, Beijing 100050, China [3]Department of Neuroradiology, Beijing Tiantan Hospital, Beijing, China [4]Department of Neurosurgery, Beijing Tiantan Hospital, Capital Medical University, 6 Tiantanxili, Beijing 100050, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17689 今日访问量:1 总访问量:943 更新日期:2025-07-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院