当前位置: 首页 > 详情页

Learning Brain Effective Connectivity Network Structure Using Ant Colony Optimization Combining With Voxel Activation Information

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer, Science and Technology, Faculty of information Technology, Beijing University of Technology, Beijing 100124, China [2]Department of Radiology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China [3]Department of Computer Science and Biomedical Engineering, University of Virginia, Charlottesville, VA 22904 USA
出处:
ISSN:

关键词: Functional magnetic resonance imaging Brain modeling Indexes Biomedical measurement Informatics Ant colony optimization Bayes methods Brain network effective connectivity bayesian network ant colony optimization voxel activation information

摘要:
Learning brain effective connectivity (EC) networks from functional magnetic resonance imaging (fMRI) data has become a new hot topic in the neuroinformatics field. However, how to accurately and efficiently learn brain EC networks is still a challenging problem. In this paper, we propose a new algorithm to learn the brain EC network structure using ant colony optimization (ACO) algorithm combining with voxel activation information, named as VACOEC. First, VACOEC uses the voxel activation information to measure the independence between each pair of brain regions and effectively restricts the space of candidate solutions, which makes many unnecessary searches of ants be avoided. Then, by combining the global score increase of a solution with the voxel activation information, a new heuristic function is designed to guide the process of ACO to search for the optimal solution. The experimental results on simulated datasets show that the proposed method can accurately and efficiently identify the directions of the brain EC networks. Moreover, the experimental results on real-world data show that patients with Alzheimers disease (AD) exhibit decreased effective connectivity not only in the intra-network within the default mode network (DMN) and salience network (SN), but also in the inter-network between DMN and SN, compared with normal control (NC) subjects. The experimental results demonstrate that VACOEC is promising for practical applications in the neuroimaging studies of geriatric subjects and neurological patients.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 计算机:跨学科应用 2 区 数学与计算生物学 2 区 医学:信息
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 计算机:信息系统 1 区 数学与计算生物学 2 区 计算机:跨学科应用 2 区 医学:信息
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY
最新[2023]版:
Q1 COMPUTER SCIENCE, INTERDISCIPLINARY APPLICATIONS Q1 MATHEMATICAL & COMPUTATIONAL BIOLOGY Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 MEDICAL INFORMATICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Beijing Municipal Key Laboratory of Multimedia and Intelligent Software Technology, College of Computer, Science and Technology, Faculty of information Technology, Beijing University of Technology, Beijing 100124, China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院