当前位置: 首页 > 详情页

Evaluating the association between brain atrophy, hypometabolism, and cognitive decline in Alzheimer's disease: a PET/MRI study.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ SSCI ◇ 预警期刊

机构: [1]Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China. [2]Department of Psychology, Tsinghua University, Beijing, China. [3]School of Psychology, Capital Normal University, Beijing, China. [4]Beijing Key Laboratory of Learning and Cognition, Beijing, China. [5]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China.
出处:
ISSN:

关键词: hybrid PET/MR Alzheimer’s disease hippocampus default mode network gray matter volume

摘要:
Glucose metabolism reduction and brain volume losses are widely reported in Alzheimer's disease (AD). Considering that neuroimaging changes in the hippocampus and default mode network (DMN) are promising important candidate biomarkers and have been included in the research criteria for the diagnosis of AD, it is hypothesized that atrophy and metabolic changes of the abovementioned regions could be evaluated concurrently to fully explore the neural mechanisms underlying cognitive impairment in AD. Twenty-three AD patients and Twenty-four age-, sex- and education level-matched normal controls underwent a clinical interview, a detailed neuropsychological assessment and a simultaneous 18F-fluoro-2-deoxy-D-glucose positron emission tomography (18F-FDG PET)/high-resolution T1-weighted magnetic resonance imaging (MRI) scan on a hybrid GE SIGNA PET/MR scanner. Brain volume and glucose metabolism were examined in patients and controls to reveal group differences. Multiple linear regression models were employed to explore the relationship between multiple imaging features and cognitive performance in AD. The AD group had significantly reduced volume in the hippocampus and DMN regions (P < 0.001) relative to that of normal controls determined by using ROI analysis. Compared to normal controls, significantly decreased metabolism in the DMN (P < 0.001) was also found in AD patients, which still survived after controlling for gray matter atrophy (P < 0.001). These findings from ROI analysis were further confirmed by whole-brain confirmatory analysis (P < 0.001, FWE-corrected). Finally, multiple linear regression results showed that impairment of multiple cognitive tasks was significantly correlated with the combination of DMN hypometabolism and atrophy in the hippocampus and DMN regions. This study demonstrated that combining functional and structural features can better explain the cognitive decline of AD patients than unimodal FDG or brain volume changes alone. These findings may have important implications for understanding the neural mechanisms of cognitive decline in AD.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 1 区 老年医学 3 区 细胞生物学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 细胞生物学 3 区 老年医学
JCR分区:
出版当年[2019]版:
Q1 GERIATRICS & GERONTOLOGY Q2 CELL BIOLOGY
最新[2023]版:
Q2 CELL BIOLOGY Q2 GERIATRICS & GERONTOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Nuclear Medicine, Xuanwu Hospital, Capital Medical University, Beijing, China.
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院