当前位置: 首页 > 详情页

Fast desensitization of acetylcholine receptors induced by a spider toxin

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [a]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Neuromodulation, Beijing, China [c]Centre of Epilepsy, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Nicotinic receptor GsMTX-4 single-channel recording allosteric desensitization membrane lipid

摘要:
Nicotinic acetylcholine receptors (nAChRs) are members of the "cys-loop" ligand-gated ion channel superfamily that play important roles in both the peripheral and central system. At the neuromuscular junction, the endplate current is induced by ACh binding and nAChR activation, and then, the current declines to a small steady state, even though ACh is still bound to the receptors. The kinetics of nAChRs with high affinity for ACh but no measurable ion conductance is called desensitization. This adopted desensitization of nAChR channel currents might be an important mechanism for protecting cells against uncontrolled excitation. This study aimed to show that Grammostola spatulata toxin (GsMTx4), which was first purified and characterized from the venom of the tarantula Grammostola spatulata (now genus Phixotricus), can facilitate the desensitization of nAChRs in murine C2C12 myotubes. To examine the details, muscle-type nAChRs, which are expressed heterologously in HEK293T cells, were studied. A single channel current was recorded under the cell-attached configuration, and the channel activity (NPo) decayed much faster after the addition of GsMTx-4 to the pipette solution. The channel kinetics were further analyzed, and GsMTx-4 affected the channel activity of nAChRs by prolonging the closing time without affecting channel conductance or opening activity. The interaction between nAChRs embedded in the lipid membrane and toxin inserted into the membrane may contribute to the conformational change in the receptor and thus change the channel activity. This new property of GsMTx-4 may lead to a better understanding of the desensitization of ligand-gated channels and disease therapy.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 3 区 生物
小类 | 4 区 生化与分子生物学
最新[2023]版:
大类 | 3 区 生物学
小类 | 4 区 生化与分子生物学
JCR分区:
出版当年[2019]版:
Q3 BIOCHEMISTRY & MOLECULAR BIOLOGY
最新[2023]版:
Q2 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [a]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Neuromodulation, Beijing, China [*1]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
通讯作者:
通讯机构: [a]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China [b]Beijing Key Laboratory of Neuromodulation, Beijing, China [*1]Department of Neurology, Xuanwu Hospital, Capital Medical University, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院