当前位置: 首页 > 详情页

A MANUAL ACUPUNCTURE MANIPULATION RECOGNITION METHOD VIA A TACTILE-VISUAL MULTI-SOURCE MULTILAYER DEEP LEARNING NETWORK

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China [2]Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Tianjin 300381, Peoples R China [3]Natl Clin Res Ctr Chinese Med Acupuncture & Moxibu, Tianjin, Peoples R China [4]Tianjin Key Lab Acupuncture & Moxibust, Tianjin 300381, Peoples R China [5]Key Lab Cerebropathy Acupuncture Therapy State Adm, Tianjin 300381, Peoples R China [6]Beijing Zhongguancun Hosp, Dept Tradit Chinese Med, Beijing 100190, Peoples R China [7]Capital Med Univ, Xuanwu Hosp, Beijing 100053, Peoples R China [8]Tianjin Acad Tradit Chinese Med, Affiliated Hosp, Tianjin 300120, Peoples R China [9]Beijing Univ Chinese Med, Int Acupuncture & Moxibust Innovat Inst, Sch Acupuncture Moxibust & Tuina, Beijing 100029, Peoples R China
出处:
ISSN:

关键词: Manual acupuncture manipulations (MAMs) multi-source deep learning parallel training of multiple meta-classifiers feature selection

摘要:
Acupuncture therapy is an important branch of traditional Chinese medicine. Identifying manual acupuncture manipulation (MAM) poses significant challenges due to the variability in manual manipulations performed by different practitioners. These variations stem from differences in acupuncture training schools, individual experience, and personal interpretation. Even for the same type of MAM, there are numerous differences in the hand posture and the characteristics of the needle-holding fingers applying force. This complexity makes accurate MAM recognition difficult, particularly for assessing young practitioners' MAM techniques from multiple perspectives, including hand movement patterns and force application characteristics. To address these challenges, we developed a multi-source manual acupuncture manipulation multilayer recognition network (MS-MAM-MRN) to recognize MAMs using single-source data (tactile or visual) and fused multi-source data (tactile and visual). First, we designed a data augmentation and feature extraction method for single-source MAM data. We then developed a deep learning modeling framework for multilayer networks with multiple classifiers trained in parallel, and defined guiding labels for multi-label classification, and constructed a reconstruction method for training datasets indexed by these labels. Through dataset reconstruction, this study made the classification complexity faced by classifiers in multi-layer classification networks decrease with each layer, improving the accuracy of each classifier layer to over 90%. Lastly, we proposed a feature selection algorithm that combines hierarchical clustering and reinforcement learning to interpret the contribution of different features in MAM recognition. To validate our approach, we conducted experiments involving 50 senior acupuncturists from three institutions and 200 postgraduate and 300 undergraduate students. The collected tactile and visual signal data supported the evaluation of the MAM recognition model. Experimental results demonstrated that for four typical MAMs, our proposed model achieved a recognition accuracy of 95.3%, confirming its validity and effectiveness.

基金:
语种:
WOS:
中科院(CAS)分区:
出版当年[2025]版:
大类 | 4 区 医学
小类 | 4 区 生物物理 4 区 工程:生物医学
最新[2025]版:
大类 | 4 区 医学
小类 | 4 区 生物物理 4 区 工程:生物医学
JCR分区:
出版当年[2023]版:
Q4 BIOPHYSICS Q4 ENGINEERING, BIOMEDICAL
最新[2024]版:
Q4 BIOPHYSICS Q4 ENGINEERING, BIOMEDICAL

影响因子: 最新[2024版] 最新五年平均 出版当年[2023版] 出版当年五年平均 出版前一年[2022版] 出版后一年[2024版]

第一作者:
第一作者机构: [1]Beijing Univ Chem Technol, Coll Informat Sci & Technol, Beijing 100029, Peoples R China
通讯作者:
通讯机构: [2]Tianjin Univ Tradit Chinese Med, Teaching Hosp 1, Tianjin 300381, Peoples R China [3]Natl Clin Res Ctr Chinese Med Acupuncture & Moxibu, Tianjin, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:18209 今日访问量:0 总访问量:997 更新日期:2025-10-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院