当前位置: 首页 > 详情页

Efficient graph convolutional networks for seizure prediction using scalp EEG

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Sch Integrated Circuits & Elect, Beijing, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Dept Neurol, Beijing, Peoples R China [3]Jinan Univ, Coll Informat Sci & Technol, Guangzhou, Peoples R China [4]Univ Macau, Fac Sci & Technol, Taipa, Macao, Peoples R China [5]South China Univ Technol, Sch Comp Sci & Engn, Guangzhou, Peoples R China
出处:
ISSN:

关键词: seizure prediction EEG GCN geometric deep learning wearable devices

摘要:
Epilepsy is a chronic brain disease that causes persistent and severe damage to the physical and mental health of patients. Daily effective prediction of epileptic seizures is crucial for epilepsy patients especially those with refractory epilepsy. At present, a large number of deep learning algorithms such as Convolutional Neural Networks and Recurrent Neural Networks have been used to predict epileptic seizures and have obtained better performance than traditional machine learning methods. However, these methods usually transform the Electroencephalogram (EEG) signal into a Euclidean grid structure. The conversion suffers from loss of adjacent spatial information, which results in deep learning models requiring more storage and computational consumption in the process of information fusion after information extraction. This study proposes a general Graph Convolutional Networks (GCN) model architecture for predicting seizures to solve the problem of oversized seizure prediction models based on exploring the graph structure of EEG signals. As a graph classification task, the network architecture includes graph convolution layers that extract node features with one-hop neighbors, pooling layers that summarize abstract node features; and fully connected layers that implement classification, resulting in superior prediction performance and smaller network size. The experiment shows that the model has an average sensitivity of 96.51%, an average AUC of 0.92, and a model size of 15.5 k on 18 patients in the CHB-MIT scalp EEG dataset. Compared with traditional deep learning methods, which require a large number of parameters and computational effort and are demanding in terms of storage space and energy consumption, this method is more suitable for implementation on compact, low-power wearable devices as a standard process for building a generic low-consumption graph network model on similar biomedical signals. Furthermore, the edge features of graphs can be used to make a preliminary determination of locations and types of discharge, making it more clinically interpretable.

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2020]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Sch Integrated Circuits & Elect, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院