当前位置: 首页 > 详情页

Spatio-Temporal-Spectral Hierarchical Graph Convolutional Network With Semisupervised Active Learning for Patient-Specific Seizure Prediction

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China [2]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China [3]Chongqing Univ, Coll Comp Sci, Chongqing 400715, Peoples R China [4]Lanzhou Univ, Sch Informat Sci & Engn, Lanzhou 730000, Peoples R China [5]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China
出处:
ISSN:

关键词: Electroencephalography Spatiotemporal phenomena Integrated circuits Convolution Scalp Training Logic gates Active learning electroencephalogram (EEG) graph convolutional network (GCN) seizure prediction spatio-temporal-spectral dependencies

摘要:
Graph theory analysis using electroencephalogram (EEG) signals is currently an advanced technique for seizure prediction. Recent deep learning approaches, which fail to fully explore both the characterizations in EEGs themselves and correlations among different electrodes simultaneously, generally neglect the spatial or temporal dependencies in an epileptic brain and, thus, produce suboptimal seizure prediction performance consequently. To tackle this issue, in this article, a patient-specific EEG seizure predictor is proposed by using a novel spatio-temporal-spectral hierarchical graph convolutional network with an active preictal interval learning scheme (STS-HGCN-AL). Specifically, since the epileptic activities in different brain regions may be of different frequencies, the proposed STS-HGCN-AL framework first infers a hierarchical graph to concurrently characterize an epileptic cortex under different rhythms, whose temporal dependencies and spatial couplings are extracted by a spectral-temporal convolutional neural network and a variant self-gating mechanism, respectively. Critical intrarhythm spatiotemporal properties are then captured and integrated jointly and further mapped to the final recognition results by using a hierarchical graph convolutional network. Particularly, since the preictal transition may be diverse from seconds to hours prior to a seizure onset among different patients, our STS-HGCN-AL scheme estimates an optimal preictal interval patient dependently via a semisupervised active learning strategy, which further enhances the robustness of the proposed patient-specific EEG seizure predictor. Competitive experimental results validate the efficacy of the proposed method in extracting critical preictal biomarkers, indicating its promising abilities in automatic seizure prediction.

基金:

基金编号: U1809209 61671042 L182015 LSZ19F020001 ZY2019020

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:人工智能 1 区 计算机:控制论
最新[2023]版:
大类 | 1 区 计算机科学
小类 | 1 区 自动化与控制系统 1 区 计算机:人工智能 1 区 计算机:控制论
JCR分区:
出版当年[2020]版:
Q1 COMPUTER SCIENCE, CYBERNETICS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 AUTOMATION & CONTROL SYSTEMS
最新[2023]版:
Q1 AUTOMATION & CONTROL SYSTEMS Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q1 COMPUTER SCIENCE, CYBERNETICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Beihang Univ, Beijing Adv Innovat Ctr Big Data & Brain Comp, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院