当前位置: 首页 > 详情页

CLEP: Contrastive Learning for Epileptic Seizure Prediction Using a Spatio-Temporal-Spectral Network

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China [3]Northwestern Polytech Univ, Sch Automat, Xian 710072, Peoples R China [4]Beijing Normal Univ, Natl Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China [5]Chongqing Univ, Coll Comp Sci, Chongqing 400715, Peoples R China [6]Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100083, Peoples R China
出处:
ISSN:

关键词: EEG contrastive learning spatio-temporal-spectral dependencies dynamic graph convolution triple attention seizure prediction

摘要:
Seizure prediction of epileptic preictal period through electroencephalogram (EEG) signals is important for clinical epilepsy diagnosis. However, recent deep learning-based methods commonly employ intra-subject training strategy and need sufficient data, which are laborious and time-consuming for a practical system and pose a great challenge for seizure predicting. Besides, multi-domain characterizations, including spatio-temporal-spectral dependencies in an epileptic brain are generally neglected or not considered simultaneously in current approaches, and this insufficiency commonly leads to suboptimal seizure prediction performance. To tackle the above issues, in this paper, we propose Contrastive Learning for Epileptic seizure Prediction (CLEP) using a Spatio-Temporal-Spectral Network (STS-Net). Specifically, the CLEP learns intrinsic epileptic EEG patterns across subjects by contrastive learning. The STS-Net extracts multi-scale temporal and spectral representations under different rhythms from raw EEG signals. Then, a novel triple attention layer (TAL) is employed to construct inter-dimensional interaction among multi-domain features. Moreover, a spatio dynamic graph convolution network (sdGCN) is proposed to dynamically model the spatial relationships between electrodes and aggregate spatial information. The proposed CLEP-STS-Net achieves a sensitivity of 96.7% and a false prediction rate of 0.072/h on the CHB-MIT scalp EEG database. We also validate the proposed method on clinical intracranial EEG (iEEG) database from our Xuanwu Hospital of Capital Medical University, and the predicting system yielded a sensitivity of 95%, a false prediction rate of 0.087/h. The experimental results outperform the state-of-the-art studies which validate the efficacy of our method. Our code is available at https://github.com/LianghuiGuo/CLEP-STS-Net.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 康复医学 2 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China
通讯作者:
通讯机构: [1]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100083, Peoples R China [6]Beihang Univ, State Key Lab Virtual Real Technol & Syst, Beijing 100083, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院