当前位置: 首页 > 详情页

Dynamic Multi-Graph Convolution-Based Channel-Weighted Transformer Feature Fusion Network for Epileptic Seizure Prediction

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China [2]Beihang Univ, Sch Engn Med, Beijing 100191, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Beijing Inst Funct Neurosurg, Beijing 100053, Peoples R China [4]Beijing Normal Univ, State Key Lab Cognit Neurosci & Learning, Beijing 100875, Peoples R China [5]Chongqing Univ, Coll Comp Sci, Chongqing 400715, Peoples R China [6]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing Adv Innovat Ctr Big Data & Brain Comp, State Key Lab Virtual Real Technol & Syst, Beijing 100191, Peoples R China
出处:
ISSN:

关键词: Seizure prediction multi-graph convolution network transformer EEG epilepsy

摘要:
Electroencephalogram (EEG) based seizure prediction plays an important role in the closed-loop neuromodulation system. However, most existing seizure prediction methods based on graph convolution network only focused on constructing the static graph, ignoring multi-domain dynamic changes in deep graph structure. Moreover, the existing feature fusion strategies generally concatenated coarse-grained epileptic EEG features directly, leading to the suboptimal seizure prediction performance. To address these issues, we propose a novel multi-branch dynamic multi-graph convolution based channel-weighted transformer feature fusion network (MB-dMGC-CWTFFNet) for the patient-specific seizure prediction with the superior performance. Specifically, a multi-branch (MB) feature extractor is first applied to capture the temporal, spatial and spectral representations fromthe epileptic EEG jointly. Then, we design a point-wise dynamic multi-graph convolution network (dMGCN) to dynamically learn deep graph structures, which can effectively extract high-level features from the multi-domain graph. Finally, by integrating the local and global channel-weighted strategies with the multi-head self-attention mechanism, a channel-weighted transformer feature fusion network (CWTFFNet) is adopted to efficiently fuse the multi-domain graph features. The proposed MB-dMGC-CWTFFNet is evaluated on the public CHB-MIT EEG and a private intracranial sEEG datasets, and the experimental results demonstrate that our proposed method achieves outstanding prediction performance compared with the state-of-the-art methods, indicating an effective tool for patient-specific seizure warning. Our code will be available at: https://github.com/Rockingsnow/MB-dMGC-CWTFFNet.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 康复医学 2 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beihang Univ, Dept Automat Sci & Elect Engn, Beijing 100191, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院