当前位置: 首页 > 详情页

General power laws of the causalities in the causal Bayesian networks

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China [2]Beijing Jishuitan Hosp, Dept Emergency, Beijing, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China
出处:
ISSN:

关键词: Causal effect power law structural causal model causal Bayesian network effective information maximum entropy >

摘要:
The power laws of network geometric properties are widely adopted to characterize the critical phenomena of complex systems, which may not describe the diverse interactions in systems effectively. By comparison, the causality represents the complicated interactions. Therefore, in this work, the power law of the causal effects in systems is studied to reflect the critical states from the perspective of causality. The causal Bayesian networks and effective information are adopted to construct the causal relationships and quantify the causal effects. The study on 20 systems from different fields shows that for a considerable proportion of systems, the causal effects of the factors in systems follow the power laws. For such causal power laws, an explanation based on the principle of maximum entropy is proposed and verified. The causal power laws may imply some critical states of systems, and can provide the basis for the quantification of systems' states and functions.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:理论方法
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:理论方法
JCR分区:
出版当年[2022]版:
Q3 COMPUTER SCIENCE, THEORY & METHODS
最新[2023]版:
Q2 COMPUTER SCIENCE, THEORY & METHODS

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Beihang Univ, Sch Reliabil & Syst Engn, Beijing, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院