当前位置: 首页 > 详情页

Chronic stress induces insulin resistance and enhances cognitive impairment in AD

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China [2]Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China [3]Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China [4]Clinical Laboratory, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China
出处:
ISSN:

关键词: Chronic stress Insulin resistance Cognitive impairment Alzheimer’s disease Glucose metabolism

摘要:
Chronic stress can induce the cognitive impairment, and even promote the occurrence and development of Alzheimer's disease (AD). Evidence has suggested that chronic stress impacts on glucose metabolism, and both of these have been implicated in AD. Here we focused on the effect of insulin resistance in glucose metabolism, and further evaluated the changes in cognition and pathology.Male 9-month-old wild-type and APP/PS1 mice were randomly divided into 4 groups. Mice in the chronic unpredictable mild stress (CUMS) groups were exposed for 4 weeks. Homeostatic Model Assessment (HOMA) was utilized to evaluate insulin sensitivity. A total of eighty-four genes related to the insulin signaling pathway were examined for rapid screening. Additionally, the phosphorylated protein expressions of insulin receptors (IR), IR substrate 1 (IRS1), c-Jun N-terminal kinase (JNK), and amyloid were detected in the hippocampus. Cognitive function was assessed through ethological methods. Cognitive function was assessed using both the Morris water maze (MWM) and the Passive avoidance test (PAT).Four weeks of CUMS exposure significantly increased the HOMA value, indicating reduced insulin sensitivity. The gene expressions of Insr and Lipe were downregulated. Additionally, the analysis revealed a significant interaction between the genotype (wild-type vs. APP/PS1) and CUMS treatment on the phosphorylated protein expressions of insulin receptor substrate 1 (IRS1). Specifically, CUMS exposure increased the inhibitory phosphorylation site (IRS1-pSer636) and decreased the excitatory phosphorylation site (IRS1-pTyr465) in the post-insulin receptor signaling pathway within the hippocampus of both wild-type and APP/PS1 mice. Moreover, CUMS exposure induced and exacerbated cognitive impairments in both wild-type and APP/PS1 mice, as assessed by the Morris water maze (MWM) and Passive avoidance test (PAT). However, there was no significant effect of CUMS on senile plaque deposition or levels of Aβ42 and Aβ40 in wild-type mice.Chronic stress significantly affects hippocampal cognitive function through insulin resistance and exacerbates AD pathology. This study reveals the complex relationship between chronic stress, insulin resistance, and AD, providing new insights for developing interventions targeting chronic stress and insulin resistance.Copyright © 2024 The Authors. Published by Elsevier Inc. All rights reserved.

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2022]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China [2]Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China [3]Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
共同第一作者:
通讯作者:
通讯机构: [1]Department of Neurology, Hebei Hospital, Xuanwu Hospital of Capital Medical University, Shijiazhuang, Hebei, China [2]Department of Neurology, The First Hospital of Hebei Medical University, Shijiazhuang, Hebei, China [3]Brain Aging and Cognitive Neuroscience Laboratory of Hebei Province, Shijiazhuang, Hebei, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院