当前位置: 首页 > 详情页

Effective connectivity of brain networks during self-initiated movement in Parkinson's disease

| 导出 | |

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [a]Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China [b]Department of Radiology, Xuanwu Hospital, Capital Medical University, Beijing, China [c]Human Motor Control Section, Medical Neurology Branch, National Institute of Neurological Disorders and Stroke, National Institutes of Health, Bethesda, MD, USA
出处:
ISSN:

关键词: Parkinson's disease Self-initiated movement Functional MRI Motor networks Basal ganglia Compensation

摘要:
Patients with Parkinson's disease (PD) have difficulty in performing self-initiated movements. The neural mechanism of this deficiency remains unclear. In the current study, we used functional MRI (fMRI) and psychophysiological interaction (PPI) methods to investigate the changes in effective connectivity of the brain networks during performance of self-initiated movement in PD patients. Effective connectivity is defined as the influence one neuronal system exerts over another. fMRIs were acquired in 18 PD patients and in 18 age- and sex-matched healthy controls, when performing a self-initiated right hand tapping task. We chose the left primary motor cortex (M1), rostral supplementary motor area (pre-SMA), left premotor cortex (PMC), left putamen, and right cerebellum as index areas for PPI analysis. During the performance of self-initiated movement, connectivity between the putamen and M1, PMC, SMA, and cerebellum was decreased in PD patients compared to controls. In contrast, connections between the M1, pre-SMA, PMC, parietal cortex, and cerebellum were increased in PD patients compared to controls. In addition, the M1, pre-SMA, PMC, and cerebellum also had less connectivity with the dorsal lateral prefrontal cortex in PD. In PD patients, the effective connectivity between the putamen and M1, PMC, SMA, and cerebellum negatively correlated with the Unified Parkinson's Disease Rating Scale (UPDRS) motor scores; whereas the connectivity between the M1, pre-SMA, PMC, and cerebellum positively correlated with the UPDRS motor scores. Our findings demonstrate that the pattern of interactions of brain networks is disrupted in PD during performance of self-initiated movements. The striatum-cortical and striatum-cerebellar connections are weakened. In contrast, the connections between cortico-cerebellar motor regions are strengthened and may compensate for basal ganglia dysfunction. These altered interregional connections are more deviant when the disorder is more severe, and, therefore, our results give further insight into the explanation for the difficulty in performing self-initiated movements in PD. (c) 2010 Elsevier Inc. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2010]版:
大类 | 2 区 医学
小类 | 1 区 核医学 2 区 神经成像 2 区 神经科学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 神经成像 2 区 神经科学 2 区 核医学
JCR分区:
出版当年[2009]版:
Q1 NEUROSCIENCES Q1 NEUROIMAGING Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING
最新[2023]版:
Q1 NEUROIMAGING Q1 NEUROSCIENCES Q1 RADIOLOGY, NUCLEAR MEDICINE & MEDICAL IMAGING

影响因子: 最新[2023版] 最新五年平均 出版当年[2009版] 出版当年五年平均 出版前一年[2008版] 出版后一年[2010版]

第一作者:
第一作者机构: [a]Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, China [*1]Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
通讯作者:
通讯机构: [*1]Department of Neurobiology, Key Laboratory on Neurodegenerative Disorders of Ministry of Education, Beijing Institute of Geriatrics, Xuanwu Hospital, Capital Medical University, Beijing, 100053, China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院