当前位置: 首页 > 详情页

Neural activity inspired asymmetric basis function TV-NARX model for the identification of time-varying dynamic systems

文献详情

资源类型:

收录情况: ◇ SCIE ◇ EI

机构: [a]Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China [b]Academy of Engineering and Technology Handan Campus, Fudan University, Shanghai, China [c]Department of Functional Neurosurgery, Beijing Neurosurgical Institute, Capital Medical University, Beijing, China [d]Department of Automatic Control and Systems Engineering, University of Sheffield, Sheffield, UK
出处:
ISSN:

关键词: System identification TV-NARX model Locally regularized orthogonal forward regression Non-stationary dynamical processes Neuronal dynamics

摘要:
Inspired by the unique neuronal activities, a new time-varying nonlinear autoregressive with exogenous input (TV-NARX) model is proposed for modelling nonstationary processes. The NARX nonlinear process mimics the action potential initiation and the time-varying parameters are approximated with a series of postsynaptic current like asymmetric basis functions to mimic the ion channels of the inter-neuron propagation. In the model, the time-varying parameters of the process terms are sparsely represented as the superposition of a series of asymmetric alpha basis functions in an over-complete frame. Combining the alpha basis functions with the model process terms, the system identification of the TV-NARX model from observed input and output can equivalently be treated as the system identification of a corresponding time-invariant system. The locally regularised orthogonal forward regression (LROFR) algorithm is then employed to detect the sparse model structure and estimate the associated coefficients. The excellent performance in both numerical studies and modelling of real physiological signals showed that the TV-NARX model with asymmetric basis function is more powerful and efficient in tracking both smooth trends and capturing the abrupt changes in the time-varying parameters than its symmetric counterparts. Crown Copyright (C) 2019 Published by Elsevier B.V. All rights reserved.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2018]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:人工智能
最新[2023]版:
大类 | 2 区 计算机科学
小类 | 2 区 计算机:人工智能
JCR分区:
出版当年[2017]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q1 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2017版] 出版当年五年平均 出版前一年[2016版] 出版后一年[2018版]

第一作者:
第一作者机构: [a]Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China
通讯作者:
通讯机构: [a]Department of Automation Sciences and Electrical Engineering, Beihang University, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院