Background and Purpose: Intracranial aneurysms with daughter blebs appear to have a higher risk of rupture. Whether hemodynamic factors are involved in this phenomenon is not clear. Methods: 54 patient-specific aneurysms harboring 69 daughter blebs were divided into ruptured and unruptured groups based on their clinical history. Realistic models were retrospectively constructed and analyzed by a computational fluid dynamic method. Results: There were no differences in the aspect ratio and morphology type of the aneurysms, the size of blebs or other common risk factors between the two groups. The wall shear stress (WSS) was significantly lower while the oscillatory shear index (OSI) was higher in the daughter blebs than in the primary aneurysms. Bleb-bearing aneurysms with a rupture history displayed significantly lower WSS in the daughter bleb. Of the daughter blebs, 73.9% were localized to the impingement region of the inflow jet. Conclusion: These observations indicate that low WSS and high OSI in the daughter blebs might be involved in increasing the risk of rupture. The localized striking force caused by inflow jets may contribute to the development of daughter blebs. However, a precise role of hemodynamics in predicting the future rupture of daughter blebs needs further study. Copyright (C) 2011 S. Karger AG, Basel
基金:
National Science Foundation of ChinaNational Natural Science Foundation of China [30772234, 81171079]; High-Level Health Technique Talent Training Plan of Beijing Health System [2009-3-22]; Special Program of Health Commonwealth Scientific Research [200902004]; National 973 Basic Research Program of ChinaNational Basic Research Program of China [2010CB732605]