当前位置: 首页 > 详情页

Spectrum-Weighted Tensor Discriminant Analysis for Motor Imagery-Based BCI

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Sch Elect & Informat Engn, Harbin Inst Technol Shenzhen, Shenzhen 518055, Guangdong, Peoples R China [2]Capital Med Univ, Adv Innovat Ctr Human Brain Protect, Beijing 100069, Peoples R China [3]Capital Med Univ, Xuanwu Hosp, Natl Clin Res Ctr Geriatr Disorders, Beijing 510510, Peoples R China [4]Artificial Intelligence Res Ctr, Peng Cheng Lab, Shenzhen 518055, Peoples R China
出处:
ISSN:

关键词: Tensile stress Feature extraction Optimization Electroencephalography Robustness Time-frequency analysis Brain computer interface (BCI) spatio-spectral filter tensor-based discriminant analysis motor imagery

摘要:
Spatio-temporal filtering has been widely used for extracting discriminative features in the motor imagery-based brain-computer interface (MI-BCI). In order to obtain high performance, the algorithms need to enhance robustness or find class-discriminative bands for the spatial filter. However, the existing methods either cannot derive the spatial and spectral filters with a unique objective function for guaranteeing convergence or rarely consider the combined optimization of spatial-spectral filters and other patterns for enhancing the discrimination. In this study, we present a novel feature extraction method termed Spectrum-weighted Tensor Discriminant Analysis (SwTDA), which optimizes spectral filters along with spatial filters and other associated patterns by tensor-based discriminant analysis. The proposed method considers intrinsic spatial-spectral-temporal information contained by the physiological signal and hence can identify discriminative characteristics robustly. The effectiveness of the algorithm is demonstrated by comparing it with several state-of-the-art methods on two datasets involving 15 different subjects. Results indicate that the SwTDA method yields higher classification accuracies than the competing methods. Furthermore, interpretable spatial-spectral patterns that are determined by the algorithm can be used for further analysis of the MI-based EEG signal.

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 工程技术
小类 | 2 区 计算机:信息系统 2 区 工程:电子与电气 3 区 电信学
最新[2025]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:信息系统 4 区 工程:电子与电气 4 区 电信学
JCR分区:
出版当年[2018]版:
Q1 COMPUTER SCIENCE, INFORMATION SYSTEMS Q1 TELECOMMUNICATIONS Q1 ENGINEERING, ELECTRICAL & ELECTRONIC
最新[2023]版:
Q2 COMPUTER SCIENCE, INFORMATION SYSTEMS Q2 ENGINEERING, ELECTRICAL & ELECTRONIC Q2 TELECOMMUNICATIONS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Sch Elect & Informat Engn, Harbin Inst Technol Shenzhen, Shenzhen 518055, Guangdong, Peoples R China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17069 今日访问量:2 总访问量:918 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院