当前位置: 首页 > 详情页

Cerebellar Atrophy in Multiple System Atrophy (Cerebellar Type) and Its Implication for Network Connectivity

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China [2]Department of Neurology, Xuanwu Hospital of Capital Medical University, Beijing 100053, China [3]Department of Neurology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China [4]Beijing University of Chinese Medicine, Beijing 100029, China [5]Department of Radiology, Aerospace Center Hospital, Beijing 100049, China
出处:
ISSN:

关键词: Cerebellar atrophy Functional connectivity Magnetic resonance imaging Multiple system atrophy Voxel-based morphometry

摘要:
We sought to assess structural and functional patterns of cerebellum in multiple system atrophy (cerebellar type), and investigate the associations of structural and functional cerebellar gray matter abnormalities. We collected magnetic resonance imaging data of 18 patients with multiple system atrophy (cerebellar type) and 18 health control subjects. The gray matter loss across the motor and cognitive cerebellar territories in patients was assessed using voxel-based morphometry. And change in the connectivity between the cerebellum and large-scale cortical networks was assessed using resting-state functional MRI analysis. Furthermore, we assessed the relationship between the extent of cerebellar atrophy and reduced-activation in the cerebellar-cortical and subthalamo-cerebellar functional connectivities. We confirmed the gray matter loss across the motor and cognitive cerebellar territories in patients and found that the extent of cerebellar atrophy was correlated with decreased connectivity between the cerebellum and large-scale cortical networks, including the default, frontal parietal, and sensorimotor networks. The volume reduction in the motor cerebellum was closely associated with the clinical motor severity. A post hoc analysis showed reduced-activation in the subthalamo-cerebellar functional connectivity without the subthalamic nucleus atrophy. These results emphasized significant atrophy in the cerebellar subsystem and its association with the large-scale cortical networks in multiple system atrophy (cerebellar type), which may improve our understanding of the neural pathophysiology mechanisms of disease. © 2020, Springer Science+Business Media, LLC, part of Springer Nature.

基金:

基金编号: No.7182105

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2018]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q3 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Radiology, Dongfang Hospital, Beijing University of Chinese Medicine, Beijing 100078, China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院