当前位置: 首页 > 详情页

Tenuifolin Attenuates Amyloid-β42-Induced Neuroinflammation in Microglia Through the NF-κB Signaling Pathway.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China. [2]Beijing Key Laboratory of Geriatric Cognitive Disorders, Beijing, P.R. China. [3]Clinical Center for Neurodegenerative Disease and Memory Impairment, Capital Medical University, Beijing, P.R. China. [4]Center of Alzheimer's Disease, Beijing Institute for Brain Disorders, Beijing, P.R. China.
出处:
ISSN:

关键词: Alzheimer disease amyloid- protein inflammation nuclear factor-κB microglia

摘要:
Inflammation and oxidative stress are believed to play an important role in the pathogenesis of Alzheimer's disease (AD). Tenuifolin (TEN) is a natural neuroprotective compound extracted from Polygala tenuifolia Willd, which may improve cognitive symptoms. This study was designed to evaluate the protective effect of TEN on inflammatory and oxidative stress induced by amyloid-β (Aβ)42 oligomers in BV2 cells, and to explore the underlying mechanisms. We conducted cell viability assays to estimate drug toxicity and drug effects on cells. Quantitative real-time polymerase chain reaction and enzyme-linked immunosorbent assays were performed to detect the release of inflammatory factors. Nitric oxide (NO) assays were used to measure the degree of oxidative stress. Western blot and immunofluorescence analysis were used to explore the influence of TEN on the nuclear factor-κB (NF-κB) pathway. Pretreatment of BV2 microglial cells with TEN inhibited the release of tumor necrosis factor-α, interleukin-6, and interleukin-1β, alleviated NO-induced oxidative stress by inhibiting the expression of inducible nitric oxide synthase and cyclo-oxygenase-2, and protected SH-SY5Y cells from the toxicity induced by the medium conditioned by BV2 cells previously exposed to Aβ42 oligomers. Moreover, TEN suppressed upstream activators of NF-κB, as well as NF-κB translocation to the nucleus in BV2 microglial cells. This study demonstrates that TEN can protect SH-SY5Y cells from Aβ42 oligomer-induced microglia-mediated inflammation, and oxidative stress by downregulating the NF-κB signaling pathway.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 2 区 医学
小类 | 3 区 神经科学
最新[2023]版:
大类 | 3 区 医学
小类 | 3 区 神经科学
JCR分区:
出版当年[2018]版:
Q2 NEUROSCIENCES
最新[2023]版:
Q2 NEUROSCIENCES

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Innovation Center for Neurological Disorders and Department of Neurology, Xuanwu Hospital, Capital Medical University, National Clinical Research Center for Geriatric Diseases, Beijing, P.R. China.
通讯作者:
通讯机构: [*1]Department of Neurology, Innovation Center for Neurological Disorders, Xuanwu Hospital, Capital Medical University, Beijing 100053, P.R.China.
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院