当前位置: 首页 > 详情页

Markerless Rat Behavior Quantification With Cascade Neural Network

| 导出 | |

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ EI

机构: [1]Department of Artificial Intelligence, Nankai University, Tianjin, China, [2]Characteristic Medical Center of the Chinese People’s Armed Police Force, Tianjin, China, [3]Key Laboratory of Exercise and Health Sciences of Ministry of Education, Shanghai University of Sport, Shanghai, China, [4]Department of Neurosurgery, China International Neurological Institute, Xuanwu Hospital, Capital Medical University, Beijing, China, [5]Research Center of Spine and Spinal Cord, Beijing Institute for Brain Disorders, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: markerless observation method rat landmark points estimation rat joint motion behavior quantification cascade neural network

摘要:
Quantifying rat behavior through video surveillance is crucial for medicine, neuroscience, and other fields. In this paper, we focus on the challenging problem of estimating landmark points, such as the rat's eyes and joints, only with image processing and quantify the motion behavior of the rat. Firstly, we placed the rat on a special running machine and used a high frame rate camera to capture its motion. Secondly, we designed the cascade convolution network (CCN) and cascade hourglass network (CHN), which are two structures to extract features of the images. Three coordinate calculation methods-fully connected regression (FCR), heatmap maximum position (HMP), and heatmap integral regression (HIR)-were used to locate the coordinates of the landmark points. Thirdly, through a strict normalized evaluation criterion, we analyzed the accuracy of the different structures and coordinate calculation methods for rat landmark point estimation in various feature map sizes. The results demonstrated that the CCN structure with the HIR method achieved the highest estimation accuracy of 75%, which is sufficient to accurately track and quantify rat joint motion.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2019]版:
大类 | 3 区 工程技术
小类 | 3 区 计算机:人工智能 3 区 机器人学 4 区 神经科学
最新[2023]版:
大类 | 4 区 计算机科学
小类 | 4 区 计算机:人工智能 4 区 神经科学 4 区 机器人学
JCR分区:
出版当年[2018]版:
Q2 ROBOTICS Q2 NEUROSCIENCES Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q3 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE Q3 NEUROSCIENCES Q3 ROBOTICS

影响因子: 最新[2023版] 最新五年平均 出版当年[2018版] 出版当年五年平均 出版前一年[2017版] 出版后一年[2019版]

第一作者:
第一作者机构: [1]Department of Artificial Intelligence, Nankai University, Tianjin, China,
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院