当前位置: 首页 > 详情页

Astrocytes constitute the major TNF-α-producing cell population in the infarct cortex in dMCAO rats receiving intravenous MSC infusion.

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE ◇ 预警期刊

机构: [a]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China [b]Department of Neurology, Northern Jiangsu People’s Hospital, Clinical Medical School of Yangzhou University, Yangzhou, China [c]Department of Neurology, the General Hospital of Guangzhou Military Command, Guangzhou, China [d]Department of neurosurgery, PLA General Hospital, Beijing, China
出处:
ISSN:

关键词: Tumor Necrosis Factor-α Cerebral Ischemia Mesenchymal Stem Cell transplantation Microglia Astrocyte

摘要:
Recent studies report that inhibiting TNF-α might be a novel therapeutic strategy for managing brain ischemia. Our previous study reported that mesenchymal stem cell (MSC) transplantation could suppress TNF-α level in both serum and brain. However, the cell type(s) that contribute to the production of TNF-α during ischemia following MSC transplantation has not been well studied. In the present study, we found by fluorescent immunohistochemistry, that 7.95 ± 6.17% of TNF-α+ cells co-expressed Iba-1 in the infarct area of dMCAO rats, a majority of which were found to be CD68+ (activated microglia), suggesting that resident microglial population were not the major source of TNF-α expression. 68.49 ± 5.12% of the TNF-α+ cells in the infarct area could be labeled by GFAP, a specific marker for astrocytes, indicating that resident GFAP+ astrocytes might be the major source of TNF-α expression in the infarct area. In addition to the infarct area, the GFAP+/TNF-α+ double-positive astrocytes accounted for 73.68 ± 7.48% of the TNF-α+ cells in striatum and corpus callosum. The infiltrating cells, including monocytes and lymphocytes, were not the main source of TNF-α either. In response to MSC transplantation, the total TNF-α+ cells as well as the percentage of TNF-α-expressing astrocytes were significantly reduced in the infarct area, suggesting that MSC transplantation could suppress the expression of TNF-α by astrocytes. Taken together, the results demonstrated that resident astrocytes, but not microglia, were the major source of TNF-α expression and could be suppressed by MSC infusion.Copyright © 2021 The Authors. Published by Elsevier Masson SAS.. All rights reserved.

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 2 区 医学
小类 | 2 区 药学 3 区 医学:研究与实验
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 药学 2 区 医学:研究与实验
JCR分区:
出版当年[2019]版:
Q1 PHARMACOLOGY & PHARMACY Q1 MEDICINE, RESEARCH & EXPERIMENTAL
最新[2023]版:
Q1 MEDICINE, RESEARCH & EXPERIMENTAL Q1 PHARMACOLOGY & PHARMACY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [a]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
共同第一作者:
通讯作者:
通讯机构: [a]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China [*1]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16461 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院