当前位置: 首页 > 详情页

Design and characterization of small-diameter tissue-engineered blood vessels constructed by electrospun polyurethane-core and gelatin-shell coaxial fiber

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China [2]Division of Biomaterials, National Institiutes for Food and Drug Control, Beijing, China [3]School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, China
出处:
ISSN:

关键词: Tissue-engineered vascular graft (TEVG) vascular remodeling coaxial fiber polyurethane (PU) gelatin mechanical properties

摘要:
Substitution or bypass is the most effective treatment for vascular occlusive diseases. The demand for artificial blood vessels has seen an unprecedented rise due to the limited supply of autologous blood vessels. Tissue engineering is the best approach to provide artificial blood vessels. In this study, a new type of small-diameter artificial blood vessel with good mechanical and biological properties was designed by using electrospinning coaxial fibers. Four groups of coaxial fibers vascular membranes having polyurethane/gelatin core-shell structure were cross-linked by the EDC-NHS system and characterized. The core-shell structure of the coaxial vascular fibers was observed by transmission electron microscope. After the crosslinking, the stress and elastic modulus increased and the elongation decreased, burst pressure of 0.11 group reached the maximum (2844.55 +/- 272.65 mmHg) after cross-linking, which acted as the experimental group. Masson staining identified blue-stained ring or elliptical gelatin ingredients in the vascular wall. The cell number in the vascular wall of the coaxial group was found in muscle embedding experiment significantly higher than that of the non-coaxial group at all time points(p < 0.001). Our results showed that the coaxial vascular graft with the ratio of 0.2:0.11 had better mechanical properties (burst pressure reached 2844.55 +/- 272.65 mmHg); Meanwhile its biological properties were also outstanding, which was beneficial to cell entry and offered good vascular remodeling performance. Polyurethane (PU); Gelatin (Gel); Polycaprolactone (PCL); polylactic acid (PLA);1-(3-Dimethylaminopropyl)-3-ethylcarbodiimide hydrochloride (EDC); N-Hydroxy succinimide (NHS); 4-Morpholine-ethane-sulfonic (MES); phosphate buffered saline (PBS); fetal calf serum (FCS); Minimum Essential Medium (MEM); Dimethyl sulfoxide (DMSO); hematoxylin-eosin (HE).

基金:
语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2020]版:
大类 | 4 区 生物
小类 | 4 区 生物工程与应用微生物
最新[2025]版:
大类 | 4 区 生物学
小类 | 4 区 生物工程与应用微生物
JCR分区:
出版当年[2019]版:
Q3 BIOTECHNOLOGY & APPLIED MICROBIOLOGY
最新[2023]版:
Q2 BIOTECHNOLOGY & APPLIED MICROBIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2019版] 出版当年五年平均 出版前一年[2018版] 出版后一年[2020版]

第一作者:
第一作者机构: [1]Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China
通讯作者:
通讯机构: [1]Department of Vascular Surgery, Xuan Wu Hospital of Capital Medical University, Beijing, China [*1]Department of Vascular Surgery, Xuanwu Hospital of Capital Medical University, No.45, Changchun Street, Xicheng District, Beijing 100053, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:17070 今日访问量:0 总访问量:919 更新日期:2025-04-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院