当前位置: 首页 > 详情页

Gesture recognition based on sEMG using multi-attention mechanism for remote control

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robot & Syst, Beijing 100081, Peoples R China [2]Capital Med Univ, Xuanwu Hosp, Beijing 100081, Peoples R China
出处:
ISSN:

关键词: Hand gesture recognition Multi-attention framework Multi-view framework Selective channel framework Selective convolutional feature

摘要:
Remote controlling using surface electromyography (sEMG) plays a more and more important role in a human-robot interface, such as controlling prosthesis devices, and exoskeleton. Different gestures are controlled by the cooperation of muscle groups, and sEMG represent the energy of the activated muscle fibers. With the limit of the low performance of wearable device, this article proposed a remote hand gesture recognized system based on deep learning framework of multi-attention mechanism convolutional neural network using sEMG energy to decoding hand gestures with remote server host. In the first part, an adaptive channel weighted method is proposed on multi-channel data of sEMG for enhancing the related feature map of sEMG and reducing the feature map low contribution of sEMG. The second part is improving the shortcuts by adding adaptively weighted instead of a simple short concatenation of feature maps. A novel multi-attention deep learning framework with multi-view (MMDL) for hand gestures recognition is proposed in our study, using sEMG. We verify the MMDL framework on myo dataset, myoUp dataset, and ninapro DB5, with the average accuracy 99.27%, 97.86%, and 97.0%, which is improved by 0.46%, 18.88%, 7% compared with prior works. In addition, the framework can classify seven hand gestures with 99.92% accuracy on ours datasets.

基金:

基金编号: 2018YFB1307301 91648207 61673068 BWS17J024

语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:人工智能
最新[2023]版:
大类 | 3 区 计算机科学
小类 | 3 区 计算机:人工智能
JCR分区:
出版当年[2021]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE
最新[2023]版:
Q2 COMPUTER SCIENCE, ARTIFICIAL INTELLIGENCE

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Beijing Adv Innovat Ctr Intelligent Robot & Syst, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院