当前位置: 首页 > 详情页

Human induced pluripotent stem cell/embryonic stem cell-derived pyramidal neuronal precursors show safety and efficacy in a rat spinal cord injury model

文献详情

资源类型:
WOS体系:
Pubmed体系:

收录情况: ◇ SCIE

机构: [1]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China [3]Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China [4]Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China [5]Department of Neurobiology, Capital Medical University, Beijing, China
出处:
ISSN:

关键词: Pyramidal neurons Corticospinal Induced pluripotent stem cell Spinal cord injury Relay circuitry Inflammation

摘要:
Nerve regeneration and circuit reconstruction remain a challenge following spinal cord injury (SCI). Corticospinal pyramidal neurons possess strong axon projection ability. In this study, human induced pluripotent stem cells (iPSCs) were differentiated into pyramidal neuronal precursors (PNPs) by addition of small molecule dorsomorphin into the culture. iPSC-derived PNPs were transplanted acutely into a rat contusion SCI model on the same day of injury. Following engraftment, the SCI rats showed significantly improved motor functions compared with vehicle control group as revealed by behavioral tests. Eight weeks following engraftment, the PNPs matured into corticospinal pyramidal neurons and extended axons into distant host spinal cord tissues, mostly in a caudal direction. Host neurons rostral to the lesion site also grew axons into the graft. Possible synaptic connections as a bridging relay may have been formed between host and graft-derived neurons, as indicated by pre- and post-synaptic marker staining and the regulation of chemogenetic regulatory systems. PNP graft showed an anti-inflammatory effect at the injury site and could bias microglia/macrophages towards a M2 phenotype. In addition, PNP graft was safe and no tumor formation was detected after transplantation into immunodeficient mice and SCI rats. The potential to reconstruct a neuronal relay circuitry across the lesion site and to modulate the microenvironment in SCI makes PNPs a promising cellular candidate for treatment of SCI.© 2024. The Author(s).

基金:
语种:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学
最新[2023]版:
大类 | 2 区 生物学
小类 | 2 区 生化与分子生物学 2 区 细胞生物学
JCR分区:
出版当年[2022]版:
Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY Q1 CELL BIOLOGY
最新[2023]版:
Q1 CELL BIOLOGY Q1 BIOCHEMISTRY & MOLECULAR BIOLOGY

影响因子: 最新[2023版] 最新五年平均 出版当年[2022版] 出版当年五年平均 出版前一年[2021版] 出版后一年[2023版]

第一作者:
第一作者机构: [1]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China [3]Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China [4]Department of Neurosurgery, Xuanwu Hospital Capital Medical University, Beijing, China
通讯作者:
通讯机构: [1]Cell Therapy Center, Beijing Institute of Geriatrics, Xuanwu Hospital Capital Medical University, National Clinical Research Center for Geriatric Diseases, and Key Laboratory of Neurodegenerative Diseases, Ministry of Education, Beijing 100053, China [2]Center of Neural Injury and Repair, Beijing Institute for Brain Disorders, Beijing, China [3]Center of Parkinson’s Disease, Beijing Institute for Brain Disorders, Beijing, China
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16470 今日访问量:0 总访问量:871 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院