当前位置: 首页 > 详情页

Bleeding contour detection for craniotomy

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China [2]Beijing Univ Posts & Telecommun, Med Robot Lab, Beijing, Peoples R China [3]Beihang Univ, Sch Mech Engn & Automat, Beijing, Peoples R China
出处:
ISSN:

关键词: Bleeding contour detection Craniotomy Mask R-CNN Neurosurgery

摘要:
Objective: Bleeding impairs observation during neurosurgery, and excessive bleeding endangers the life of a patient. Thus, hemostasis is important during neurosurgery. The detection of bleeding areas is a prerequisite for hemostasis. Methods: To the best of our knowledge, this paper is the first to present results on the detection of neurosurgical craniotomy bleeding scenarios, i.e., scalp incision bleeding, skull incision bleeding, and dura matter-incision bleeding. This is realized via a workflow that combines craniotomy image data preparation and a Mask R-CNN framework. Bleeding images on a porcine skin tissue with a simulated blood injected by a syringe are taken by a visible light camera, and the video frames of the scalp incision, skull incision, and dura matter-incision bleeding are extracted from neurosurgical videos. Results: The precision of bleeding areas detection for the simulated bleeding scenario and the three craniotomy phase scenarios were 94.40%, 84.44%, 89.48%, and 90.46%. Conclusion: The contours of the neurosurgical craniotomy bleeding regions can be detected along with the bleeding areas. Significance: It is beneficial for neurosurgeons to identify the bleeding areas by sending prioritized alerts for bleeding events. Furthermore, it is valuable for a task-level medical robot designed for a neurosurgical pro-cedure, such as craniotomy, or a high-level robot designed for an entire neurosurgery procedure.

基金:
语种:
被引次数:
WOS:
中科院(CAS)分区:
出版当年[2021]版:
大类 | 2 区 工程技术
小类 | 3 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 3 区 工程:生物医学
JCR分区:
出版当年[2020]版:
Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2020版] 出版当年五年平均 出版前一年[2019版] 出版后一年[2021版]

第一作者:
第一作者机构: [1]Capital Med Univ, Xuanwu Hosp, Dept Neurosurg, Beijing, Peoples R China
共同第一作者:
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院