当前位置: 首页 > 详情页

Effects of Microstate Dynamic Brain Network Disruption in Different Stages of Schizophrenia

文献详情

资源类型:
WOS体系:

收录情况: ◇ SCIE

机构: [1]Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China [2]Chinese Acad Sci, Inst Automat, Beijing, Peoples R China [3]Capital Med Univ, XuanWu Hosp, Dept Neurosurg, Beijing 100088, Peoples R China [4]Beijing Inst Technol, Adv Res Inst Multidisciplinary Sci, Beijing 100081, Peoples R China
出处:
ISSN:

关键词: Dynamic brain network information interaction microstates resting-state EEG schizophrenia stages

摘要:
Schizophrenia is a heterogeneous mental disorder with unknown etiology or pathological characteristics. Microstate analysis of the electroencephalogram (EEG) signal has shown significant potential value for clinical research. Importantly, significant changes in microstate-specific parameters have been extensively reported; however, these studies have ignored the information interactions within the microstate network in different stages of schizophrenia. Based on recent findings, since rich information about the functional organization of the brain can be revealed by functional connectivity dynamics, we use the first-order autoregressive model to construct the functional connectivity of intra- and intermicrostate networks to identify information interactions among microstate networks. We demonstrate that, beyond abnormal parameters, disrupted organization of the microstate networks plays a crucial role in different stages of the disease by 128-channel EEG data collected from individuals with first-episode schizophrenia, ultrahigh-risk, familial high-risk, and healthy controls. According to the characteristics of the microstates of patients at different stages, the parameters of microstate class A are reduced, those of class C are increased, and the transitions from intra- to intermicrostate functional connectivity are gradually disrupted. Furthermore, decreased integration of intermicrostate information might lead to cognitive deficits in individuals with schizophrenia and those in high-risk states. Taken together, these findings illustrate that the dynamic functional connectivity of intra- and intermicrostate networks captures more components of disease pathophysiology. Our work sheds new light on the characterization of dynamic functional brain networks based on EEG signals and provides a new interpretation of aberrant brain function in different stages of schizophrenia from the perspective of microstates.

基金:

基金编号: 2022ZD0208500 U20A20191 82071912 12104049 82202291 2023CX01024

语种:
被引次数:
WOS:
PubmedID:
中科院(CAS)分区:
出版当年[2022]版:
大类 | 2 区 工程技术
小类 | 2 区 康复医学 2 区 工程:生物医学
最新[2023]版:
大类 | 2 区 医学
小类 | 1 区 康复医学 2 区 工程:生物医学
JCR分区:
出版当年[2021]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL
最新[2023]版:
Q1 REHABILITATION Q2 ENGINEERING, BIOMEDICAL

影响因子: 最新[2023版] 最新五年平均 出版当年[2021版] 出版当年五年平均 出版前一年[2020版] 出版后一年[2022版]

第一作者:
第一作者机构: [1]Beijing Inst Technol, Sch Life Sci, Beijing 100081, Peoples R China
通讯作者:
推荐引用方式(GB/T 7714):
APA:
MLA:

资源点击量:16409 今日访问量:0 总访问量:869 更新日期:2025-01-01 建议使用谷歌、火狐浏览器 常见问题

版权所有©2020 首都医科大学宣武医院 技术支持:重庆聚合科技有限公司 地址:北京市西城区长椿街45号宣武医院